HUGHES HELICOPTERS CULVER CITY CALIF CONVENTIONAL MACHINING OF ESR 4340 STEEL.(U) JUL 80 K K NIJI HH-80-125 USAAVRADCOM-AD-A088 451 F/G 13/8 DAAG46-78-C-0046 USAAVRADCOM-TR-80-F-14 NL UNCLASSIFIED 1002 4089451

AVRADCOM Report No. TR 80-F-14 AD

MANUFACTURING METHODS AND TECHNOLOGY (MANTECH) PROGRAM

CONVENTIONAL MACHINING OF ESR 4340 STEEL

K.K. Niji **Hughes Helicopters** Division of the Summa Corporation Culver City, California 90230

July 1980 STURE OF PAGES WHICH DO BOX

FINAL REPORT

Contract No. DAAG46-78-C-0046

Approved for public release; distribution unlimited

Prepared by ARMY MATERIALS AND MECHANICS RESEARCH CENTER

Sponsored by U.S. ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Do not return it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

(180 m, VRA = 9R)	
UNCLASSIFIED AMINISC	(1) 1 1 7 1
SECURITY CLASSIFICATION OF THIS PAGE (WHITH Date Entered)	(12)
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT MUMBER	
(17) TR-80-F-14 TK-50 AD AO 88451	
4. TITLE (and Subtitle)	5. TYPE OF PERONT & PERIOD COVERED
(Final Report. 1 Septem 78—1 Apr 80.
Conventional Machining of ESR 4340 Steel	TOP TO THE ON NUMBER
The state of the s	/4 HH-89-125
2. AUTHOR(a)	SE SONTRACT ON GRANT NUMBER(s)
K. K. Niji/ Hughes Helicopters	DAAG46-78-C-0046
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Hughes Helicopters 🗸	D/A Proj: 1787240
Division of Summa Corporation	AMCMS Code: 1497017240XT8
Culver City, CA 90230	12: REPORT WATE
	Jul 88
Army Aviation Research and Development Command - St. Louis, Missouri	II. SUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office	104 o) 15. SECURITY CLASS. (of this report)
Army Materials and Mechanics Research Center	
Watertown, Massachusetts 02172	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution u	nlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen	t from Report)
18. SUPPLEMENTARY NOTES	
AMMRC TR 80-34	
19. KEY WORDS (Continue on reverse side if necessary and identify by block num	
Machining Tool life	Turning
Electroslag remelting Cutting rates	
4340 Steel Cutting fluids	
20. ABSTRACT (Continue on reverse side if necessary and identify by block num	ber)
This program involved the study of conventiona	al machining of heat treated
ESR 4340 steel (Rc 54-57). Initial effort involved	
regarding the machining of high strength steels	
above. A machining program was conducted, conditions for turning, drilling, face milling,	<u> </u>
I conditions for the mine, drining, tace milling,	CIA MAILLINE, CHA ELINAME

operations. Effects of various parameters including cutting speeds, feeds,

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

701164

M

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

depths of cut, and cutting fluids on tool life was determined. All the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques were found to be applicable to this material when proper dressing procedures and reduced rates were used.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

SUMMARY

Hughes Helicopters (HH) under Army Contract DAAG 46-78-C-0046 has completed a study of the conventional machining of ESR 4340 steel. The objective of this program was to optimize procedures and develop an efficient machining specification. Metcut Research Associates, a leader in the research and development of metal removal technology, was the subcontractor.

The program conducted between September 1978 through March 1980 was sponsored by U. S. Army Aviation Reserach and Development Command (AVRADCOM), St. Louis, Missouri and monitored by U. S. Army Materials and Mechanics Research Center (AMMRC) Watertown, Massachusetts, under the direction of Mr. Arthur Ayvazian. The machining tests were conducted at Met cut under the direction of Mr. J. Kohls and Mr. J. Christopher. The project was coordinated by the HH project engineer, Mr. K. Niji, with the assistance of Mr. J. Leach of the Manufacturing Department.

ESR 4340 steel is presently being used for various critical parts on the YAH-64 for its high ballistic tolerance characteristics. Its advantageous qualities of high hardness and toughness creates great difficulties in machining. Because of its relatively new usage, there is no manufacturing source of information which presents an efficient machining method for this material. This program was designed to resolve that problem.

This program was initially conceived as an 18-month two-phase program. Phase I began with an initial survey of available data regarding the machining of ESR 4340 steel. A machining test program was then developed and conducted, studying the effects of various parameters in turning, drilling, milling, and grinding. Optimum tools and conditions were obtained for these operations. All of the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques, emphasizing wheel dressing procedures and reduced speeds and downfeeds, proved to be applicable to this material. In view of most of the machining results, Phase II involving the application of Phase I findings to the fabrication of YAH-64 components was cancelled. Studies involving alternative methods are now being considered.

CONTENTS

SUMMARY	111
INTRODUCTION	1
DISCUSSION	5
CONCLUSION AND RECOMMENDATIONS	25
APPENDIX A - SURVEY DATA	A - 1
APPENDIX B - HUGHES HELICOPTER MATERIAL SPECIFICATION FOR ESR 4340 STEEL	B-1
APPENDIX C - EXCERPT FROM HUGHES HELICOPTER HEAT TREAT SPECIFICATION FOR ESR 4340 STEEL	C-1
APPENDIX D - METCUT'S SURFACE GRINDING REPORT	D-3
APPENDIX E - HUGHES HELICOPTERS SPECIFICATION FOR LOW STRESS GRINDING OF HIGH STRENGTH STEEL	E-1

INTRODUCTION

Hughes Helicopters (HH), with the assistance of Metcut Research Associates as a major subcontractor, has completed a program studying conventional machining methods for ESR 4340 steel in an attempt to develop an efficient machining procedure. Hughes Helicopters is interested in the development of such a procedure for ESR 4340 steel since many of the components in the drive system, flight control system and hydraulic subsystem of the YAH-64 are made from this material. Figure 1 and Table I illustrate the areas where these parts are located. This material is being used to make these various parts specifically because of its high ballistic tolerance characteristics. Parts made of ESR 4340 steel tend to withstand the impact of a 12.7 mm armor piercing round or the explosive energy of a 23 mm HEI (high explosive incendiary) round that might completely fragment parts made of normal 4340 steel.

The low non-metallic inclusion content, the high density of the material, and the uniformity of structure provides ESR steel with its toughness quality, while still maintaining its high hardness (Rc 54-57 in the heat treated condition). Defects such as central porosity and line inclusion accumulations in rolled and forged plates are virtually eliminated. The uniform structure obtained from the electroslag remelt process produces a material whose yield strength and fracture toughness are similar in both transverse and longitudinal directions. These high properties in the short transverse direction permits reductions in plate thickness, subsequently reducing weight and material costs.

The qualities that make application of ESR steel so advantageous also create difficulties in machining the material. The desulfurization and oxide inclusion removal, which results in the clean steel, removes elements which enhance machinability. Because of its relatively new usage, there is no manufacturing specification which deals with the efficient machining of ESR 4340 steel.

After an initial survey of available information regarding the machining of ESR 4340 steel and other high hardness materials, tests were conducted to ascertain the effects of various parameters such as cutting speeds, feeds and fluids. An assortment of carbide tools, along with various ceramics for turning, and high speed steels for drilling, were obtained and studied during the course of the machining tests. A determination of optimum tools and conditions were made for turning, drilling, face milling, end milling, and grinding operations. The optimum tools and conditions are presented and discussed in this report.

Critical Areas Where ESR 4340 Steel is Used on the YAH-64 Figure 1.

TABLE I. ESR STEEL YAH-64 HELICOPTER COMPONENT PARTS

Name	Part Number	No. of Pieces	Finished Weight (lb)
DRIVE			
Main Transmission			
Intermediate Gear Bearing Retainer T/R Helical Pinion Retainer Rotor Brake Adapter Input Pinion Bearing Adapter Intermediate Gear Roller Bearing Liner Input Bevel Gear Bearing Liner Input Bevel Gear Bearing Sleeve T/R Helical Gear Sleeve Gen. Roller Bearing Sleeve Gen. Ball Bearing Sleeve Rotor Brake Roller Bearing Sleeve Input Pinion Thrust Bearing Sleeve Input Pinion Roller Bearing	7-113100122 7-113100125 7-113100131 7-113100132 7-113100143 7-113100144 7-113100145 7-113100146 7-113100149 7-113100150 7-113100154	1 1 2 2 1 2 1 2 2 2	2. 3 0. 9 2. 4 2. 4 3. 0 5. 8 6. 2 0. 5 0. 2 0. 5
Sleeve Hydraulic Pump Gear	7-113100155	2	1.0
Bearing Sleeve	7-113100156	8	1.3
Intermediate Gearbox Roller Bearing Output Sleeve Duplex Ball Bearing Sleeve Roller Bearing Input Sleeve	7-113300143 7-113300144 7-113300147	1 2 1	0. 4 4. 2 0. 4
Tail Rotor Gearbox			
Input Gear Sleeve Input Gear Roller Bearing Sleeve Output Gear Roller Bearing	7-113400143 7-113400144	1	2.6
Sleeve Output Gear Sleeve	7-113400145 7-113400146	1	1.3 2.5

TABLE I. ESR STEEL YAH-64 HELICOPTER COMPONENT PARTS (CONT)

Name	Part Number	No. of Pieces	Finished Weight (lb)
FLIGHT CONTROL AND ROTOR GROUP			
Main Rotor			
Rotating SP Bearing Retainer Adj Pitch Link Barrels Pitch Link Rod Ends	7-211511204 7-211511136 7-211511137	1 4 4	7.0 5.1 8.4
Tail Rotor			
Rotating Swashplate Swashplate Bearing Retainer	7-211527003 7-211527016	1 1	7.8 3.3
HYDRAULIC SUBSYSTEM			
Main Rotor Actuators			
Longitudinal Lateral Collective		1 1 1	49.1 38.6 44.4
Tail Rotor Actuator		1	32.6
SHIPSET TOTAL	26	53	242.6

DISCUSSION

This effort was originally planned as a two phase program. The first phase would primarily involve testing by Metcut to determine best conditions for achieving high machining efficiency. The second phase would apply this information to the fabrication of small YAH-64 components.

The first task in Phase I involved a survey by Hughes Helicopters and Metcut reviewing current manufacturing procedures being followed regarding ESR 4340. Little or no attempt was being made to finish machine parts by any of the vendors or subcontractors. Major Hughes Helicopters subcontractors working on the AAH program using ESR 4340 steel, included Aircraft Gear (T/R gearbox components), Bendix (drive train components) Bertea (hydraulic actuators), and Litton (main transmission components). The procedure most commonly followed, primarily involved rough machining in the annealed state, then slow grinding of 0.050 - 0.070 inches of material to finished dimensions after heat treatment. Most of the data gathered was obtained through a literature survey conducted at Metcut's Machinability Data Center. Data regarding the machining of high hardness metals (50R_C and above) have been compiled in a form similar to the data sheets in the Machining Data Handbook and are presented as Appendix A. Data for turning (carbide and ceramic), drilling, face milling, end milling, tapping, and grinding have been gathered and grouped by operation and hardness ranges. The information was to be used to find a starting point for tools and parameter values for our efforts in machining ESR 4340 steel.

The initial step in the program was to fabricate test specimens. The ESR process involves remelting a consumable electrode at atmospheric pressure in a superheated molten slag bath which protect the molten metal from atmospheric contamination. Electricity is passed through the slag, generating enough heat to melt the end of the electrode which is immersed in the slag. The ESR ingot grows through progressive solidification of the molten metal in a water cooled mold. The solidification characteristics are greatly influenced by the size, shape and temperature of the molten metal pool. After the ingots are solidified, they are forged to various standard rounds and round corner squares. HMS 6-1121 is the Hughes specification for ESR 4340 and is included as Appendix B. The material then had to be machined into the various test sample sizes (3 inch diameter bars for the turning tests and

various rectangular sizes for the other tests). After machining to test sizes, the material then had to be heat treated prior to testing. The heat treat process is a long one, involving normalizing, tempering and austenitizing in a vacuum furnace. The specific times and temperatures involved are presented in an excerpt from the Hughes Helicopters heat treatment specification, Appendix C. Due to the necessity of a vacuum furnace and the long time required, the heat treat process is a costly one. The difficulties incurred in obtaining acceptable ESR 4340 material for this program were increased due to the great and immediate demand required for the fabrication of actual YAH-64 parts.

The program required evaluation of material from two different heats in the turning operation. The other machining tests were to be conducted on material from the heat which was harder to turn. Some material from a previously purchased heat (No. 9087-4) was used for part of the turning tests. Heat treated hardnesses for this residual material did not meet minimum requirements. The specification called for 54-57 Rc, while the material could only reach 51-53 Rc hardnesses, even after re-heat treatment of the material. This was thought to be due to the fact that its carbon content was barely on the minimum end of the requirements. The material was still used in testing because of the difficulties in readily obtaining test material. It was also determined that the maximum thickness permitted for through-hardening was 3 inches. Thicker material resulted in a hardness reduction, not only in the core area, but towards the surface of the material as well. The bulk of the test material came from a newly purchased heat, No. 49103. This material was heat treated at Ironbound Inc., in New Jersey. Tensile specimens were heat treated along with the test material to verify the heat treatment. The mechanical properties of both transverse and longitudinal tensile specimens were found to meet minimum requirements. Hardness measurements taken on the new heat material indicate little hardness reduction. usually ranging about 54-55 Rc.

Initially, turning tests were conducted on 3 inch diameter bars from both the residual heat and the new heat. Using various carbide and ceramic inserts, determination of the best tool was made. For each tool, relations between cutting speeds, feeds, depths of cut and tool lives were analyzed in an attempt to establish the most efficient tool. A tool life limit of about 30 minutes was set for the turning tests due to limited amounts of material and time. The data obtained for turning is presented in Table II. Effects of cutting speeds on tool life for various carbide and ceramic inserts are illustrated in Figures 2 and 3. The feeds and speeds were rather low and tool lives quite short for the carbide inserts. At 0.050 inch depth of cut, the carbide grades generally had a tool life of less than 10 minutes for feeds of 0.005 inch and speeds greater than 150 fpm. Speeds lower than 150 fpm were generally not

TABLE II. DATA FROM TURNING (Heat 49103)

Insert	Cutting Speed (ft/min)	Feed (in./rev)	Depth of Cut (in.)	Tool Life (min:sec)
Carboloy 514	175 150	0. 005 0. 005	0.050 0.050	1:50 9:00
Carboloy 545	175 150	0.005 0.005	0.050 0.050	10:36 26:40
Carboloy 350	250 200 175 150 125	0.005 0.005 0.005 0.005 0.005	0.050 0.050 0.050 0.050 0.050	0:42 6:24 12:55 0.004" wear @ 30:00 0.002" wear @ 10:00
Carboloy 883	250 225 200 175 150 125	0.005 0.005 0.005 0.005 0.005	0.050 0.050 0.050 0.050 0.050 0.050	1:50 5:00 5:00 7:10, 7, 3:10 8:30 10:00
B & W Ceramic	1000 800 800 700 600	0.005 0.005 0.0025 0.005 0.005	0.050 0.050 0.050 0.050 0.050	0:21 1:08 1:00 1:09 2:37
NPC-A Ceramic	1000 800 800 700 600	0.005 0.005 0.0025 0.005 0.005	0.050 0.050 0.050 0.050 0.050	0:22 0:50, 3:50 9:14 1:25 1:32
Sandvik 315	250 175 150	0.005 0.005 0.005	0.050 0.050 0.050	0:10 2:40 3:20
Kendex K-090 Ceramic	500 525 550	0. 005 0. 005 0. 005	0.050 0.050 0.050	21:00 34:00 1:55

TABLE II. DATA FROM TURNING (Heat 9087) (CONT)

Insert	Cutting Speed (ft/min)	Feed (in./rev)	Depth of Cut (in.)	Tool Life (min:sec)
Carboloy 883	100 175	0.010 0.005	0.100 0.050	22:00 7:10
Carboloy 350	175	0.005	0.050	30:00
Carboloy 545	175	0.005	0.050	30:00
NPC-A Ceramic	1000 900 800 500 600	0.005 0.005 0.005 0.005 0.0025	0.050 0.050 0.050 0.050 0.050	4:00 0:24 0:25 2:51 25:45
B&W Ceramic	1000 900 800	0.005 0.005 0.005	0.050 0.050 0.050	0:37 1:00 2:26
Kendex K-090 Ceramic	500 550 600	0.005 0.005 0.005	0. 050 0. 050 0. 050	29:16 8:22 2:18, 4 :10

Tool geometry for all turning inserts as follows:

Back Rake: -50 Side Rake: -50

SCEA: 15° Side Relief: 5° ECEA: 15° End Relief: 5°

Figure 2. Effect of Cutting Speed and Tool Material (Carbide Inserts)

Figure 3. Effect of Cutting Speed and Tool Material (Ceramic Inserts)

tested due to its impracticality. The lower hardness of the residual heat material (Ht. 9087) seemed to make a great deal of difference regarding the life of the tool, in many cases doubling the tool life which was obtained when machining material from the other heat. A better picture of tool life variance due to insert types can be obtained by comparing the effects of turning material from heat No. 49103. Of the carbide inserts used for this heat, the Carboloy 545 and 350 grades seemed to perform the best. The 545 is an aluminum oxide coated, complex tungsten carbide insert used for finish machining. The 350 is an uncoated complex tungsten carbide insert used for light to medium roughing. Both have excellent resistance to high temperature crater and deformation. Ceramic inserts were expected to give better results, but chipping problems abruptly ended the tests after a few minutes. Speeds of 600 fpm and greater were used for these inserts. Another grade of ceramic, Kennametal Kendex K-090, was obtained in an attempt to eliminate chipping. Using lower cutting speeds, ~500 feet/minute, we were able to extend tool life up to approximately 30 minutes. The data obtained for the Kendex K-090 insert for Ht. 49103 is erratic. However, from the similarities of both heats involving the other ceramic inserts and the considerable improvements in tool life displayed by the K-090 in both heats, it is assumed that the curves are indicative of performance. The tool life end point was regarded as 0.015 inch wearland. This Kendex K-090 ceramic insert provided the best performance of all the tools tested.

Drilling was the next operation evaluated, using material from the new heat. The data obtained for drilling is presented in Table III. The study was limited to a single drilling diameter of 1/4 inch. Initially, various high speed steel and carbide drills were evaluated at various cutting speeds as low as 5 and 10 feet/minute and as high as 80 feet/minute. Using values of 0.001 ipr feed, 1/2 inch through depth of cut, with soluble and sulfurized oils, a determination of tool life was made. The results were very poor, with no more than 3 holes drilled per tool and a norm of 1 hole being drilled per tool. Attempts were made to obtain some T-15 drills, but a source could not be located. Chlorinated cutting fluid was obtained and appears to be of some benefit in drilling. The M-42 H.S.S. crankshaft point was used with the chlorinated oils to obtain additional data. Some of the effects of speeds and feeds using the M-42 drill is illustrated in Figure 4. Using very low cutting speeds of 5-15 feet/minute, and feeds of 0.0005-0.001 inches/ revolution, drilling of multiple holes (~10/tool) was found to be possible. A tool life of 34 holes was obtained using a speed of 5 feet/minute and a feed of 0.0008 inches/revolution. As in turning, the tool life end point was regarded as 0.015 inch wear.

Face milling tests were conducted next, with an initial evaluation of various inserts. All of the information obtained is presented in Table IV. Figure 5 compares the various tools (including the Carmet CA310 which was

TABLE III. DRILLING

Tools	Cutting Speed (ft./min.)	Feed (in./rev.)	Depth of Cut (in.)	Cutting Fluid	Tool Life No. of Holes			
High Speed Steel	10	0.001	1/2	Soluble Oil	0			
High Speed Steel Crankshaft	5	0.001	1/2	Sulfurized Oil	3			
Carbide	10	0.001	1/2	Soluble Oil	1			
	80 80	0.0005	1/2	Sulfurized Oil	1,1,1,1			
	80	0.001	1/2	Sulfurized Oil	1			
M-42	25	0.001	1/2	Soluble Oil	1			
H.S.S.	10	0.001	1/2	3				
Crankshaft	10	0.001	1/2	Soluble Oil	1			
į į	10	0.0005	1/2	Soluble Oil	2			
	5	0.001	1/2	Soluble Oil	2			
M-42 H.S.S.	5	0.0008	1/2	Chlorinated Oil	34			
Crankshaft	5	0.002	1/2		10			
	5	0.005	1/2		2			
	8	0.0005	1/2		10			
	10	0.0008	1/2		7			
	10	0.001	1/2		11			
	10	0.002	1/2		1			
	15	0.0005	1/2		6			
	15	0.0008	1/2	Chlorinated Oil	3			

Figure 4. Effect of Cutting Speeds and Feeds in Drilling Using M42 H.S.S. Crankshaft Drill

TABLE IV. FACE MILLING DATA

Machining conditions constant for all tests below.

Depth of Cut = 0.060^{11}

Width of Cut = 1.1/2''

Tool Life End Point: 0.015" wear

Insert	Cutting Speed ft./min	Feed in./tooth	Cutting Fluid	Tool Life Inches of Work Traveled
	Carbide			
Sandvik	125	0.005	Dry	2 1/2"
315	150	0.003	Dry	4"
Kennametal		ł		
K-11	150	0.003	Dry	20''
K7H	150	0.003	Dry	2"
KC810	125	0.005	Dry	2 1/2"
Carboloy		ł		
210	150	0.003	Dry	111
370	150	0.003	Dry	11"
545	125	0.005	Dry	1"
883	40	0.005	Dry	10"
	60	0.005	Dry	12 1/2"
	75	0.005	Dry	8", 12"
	100	0.003	Dry	24"
	125	0.005	Dry	12"
	125	0.0015	Dry	19''
	125	0.003	Dry	29''
	150	0.003	Dry	36"
	150 (0.030" depth)	0.003	Dry	36''
	150 (0.090" depth)	0.003	Dry	28''
	150	0.003	Soluble Oil	6 1/2"
	200	0,003	Dry	15 1/2"
999	150	0.003	Dry	4''
Carmet	75	0.0085	Dry	54''
CA310	100	0.0085	Dry	60''
	100	0.003	Dry	32''
	100	0.005	Dry	41''
	100	0.007	Dry	56''
	100	0.010	Dry	48''
	125	0.0085	Dry	24''
	150	0.003	Dry	24''
	Ceramic			
Kennametal				
K060	125	0.005	Dry	1"
K090	125	0.005	Dry	7", 9-3/4"
	150	0.003	Dry	5 1/2", 10 1/2"
	175	0.003	Dry	10 1/2"

FACE MILLING CUTTING SPEED: 125 FT/MIN FEED: 0.005 IN./TOOTH DEPTH: 0.060 IN. CUTTING FLUID: DRY

INSERT TYPE

Figure 5. Comparison of Tools for Face Milling

obtained later) under like conditions. Of the tools initially evaluated, the Carboloy 883 insert appeared to perform the best. Effects of cutting speeds, feeds, and depths of cut were evaluated using this insert (Figure 6). It was determined that for this insert, a speed of 150 feet/minute and a feed of 0.003 inch/tooth was optimum. Also depths of cut higher than 0.060 inch seemed to result in a reduction of tool life, while lower depths of cut did not seem to produce much improvement. Another type of insert, a Carmet CA 310 was later obtained and tested. This micrograin carbide insert has the ability to withstand great impact and proved to be the best face milling tool tested. Figure 7 illustrates the effects of various parameters upon the performance of the CA 310 insert. Using greater feeds, but lesser speeds than the 883 carbide, tool lives of 40-60 inches of work traveled were obtainable with the Carmet insert. This is in comparison to the typical values of 10-30 inches obtained using the 883 insert. For the Carmet insert, a speed of 100 feet/minute and a feed of 0.0085 inch/tooth seemed to be optimum, using a 0.060 inch depth of cut. Some tests were attempted using cutting fluid but better results were obtained when the tests were run dry.

Peripheral end milling tests were run using various brazed on carbide end mills and insert type end mills. The data obtained with these tools is presented in Tables V and VI. A comparison of the tools tested is shown in Figure 8. Union, Rito and TRW end mills had brazed helical carbides while the 370 tool was brazed with a straight 370 carbide insert with no helix angle. These brazed end mills were all four-fluted. Ramet, 370 and 883 insert type end mills with equivalent geometries were tested. The insert types were all three fluted. The TRW was found to be the best of the brazed on type and the Ramet was found to be the best of the insert type. At a cutting speed of 100 feet/minute, a feed of 0.003 inch/tooth, a depth of cut of 0.060 inches, and a width of cut of 0.375 inches, both the Ramet and TRW tools had a tool life of 156 inches traveled. Though the tool life values for both of these tools were similar, the TRW tool had a higher removal rate due to the four-fluted nature of the tool. Again, better results were obtained without using a cutting fluid.

Finally, various grinding tests were conducted on the material. A study was made using low stress grinding techniques, and also using maximum and minimum values of two Hughes Helicopters process specifications, HP 18-12 and HP 15-51. The surface grinding conditions used are given in Table I of Appendix D. Figure 5 of Appendix D presents measured residual stress profiles from the surface to a depth of 0.0020 inches. Low level compressive stress, beneficial in fatigue, is present, along and just below the surface. Microhardness measurements taken at various distances from the surface illustrate the degree of surface degradation occurring for each condition.

Figure 6. Effect of Parameter Variations in Face Milling with 883 Insert

Figure 7. Effect of Parameter Variations in Face Milling with CA 310 Insert

TABLE V. PERIPHERAL END MILLING DATA

Brazed	on carbide end	mill geome	try.			
Radia Co r n		Unio 20° 5° 45° 10° 3°	20° 5° 45° 1°	TRW 7° 5° 45° 1° 10° 3°	370 0° -5° 45° 1° 10° 3°	
Cutting Tool	Cutting Speed ft./min.	Feed in./tooth	Depth of Cut in. Brazed on	Width of Cut in.	Cutting Fluid	Tool Life in Work Traveled
Union Rito Trw 370	100 100 100 100 75 100 100 100	0.002 0.002 0.002 0.003 0.002 0.001 0.001 0.002 0.003 0.002	0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	0. 375 0. 375 0. 375 0. 375 0. 375 0. 375 0. 375 0. 375 0. 375	Dry Dry Dry Dry Dry Dry Dry Sol. Oil Dry Dry Dry	84" 60" 180" 156" 48" 108" 48" 132" 108" 120"

100

100

100

883

TABLE VI. PERIPHERAL END MILLING DATA

Geome	try of Insert E	nd Mills.				
1	Axial Rake: Radial Rake: Corner Angle: End Cutting Edg	ge Angle:	0° 50 45° 450			
1	Per. Cl.: End Cl.:		5° 5°			
Insert	Cutting Speed ft./min.		Depth of Cut	Width of Cut in.	_	
Ramet	100 100 100	0.002 0.003 0.002	0.060 0.060 0.060	0.375 0.375 0.375	Dry Dry Dry	13 2 156 72
1					- ,	

0.060

0.060

0.060

0.375

0.375

0.375

Dry

Dry

Dry

48

82

72

0.003

0.002

0.003

PERIPHERAL END MILLING
CUTTING SPEED: 100 FT/MIN
FEED: 0.002 IN./TOOTH
RADIAL DEPTH OF CUT: 0.060 IN.
AXIAL DEPTH OF CUT: 0.375 IN.
TOOL END PT: 0.012 IN. UNIFORM
OR
0.020 IN. LOCALIZED

Figure 8. Comparison of Tools for Peripheral End Milling

This is illustrated in Figure 4 of Appendix D. Note that the greatest adverse effect takes place for HP 15-51 maximum. Detrimental surface tensile stresses occur for this condition and the photomicrograph (Figure 3 of Appendix D) indicates the extent of subsurface alterations. Photomicrographs (Figures 1, 2 and 3 of Appendix D) of the other conditions seem to show a generally smooth surface with a thin layer (0.0001 inch) of untempered martensite, and slight surface lapping and cracking.

The information obtained in this program, along with previously published data, indicate that certain modifications should be considered in the low stress grinding specification for ESR 4340 steel, HP 18-12 (Appendix E). The tests run by Metcut have verified the credibility of HP 18-12. However, certain variables such as crossfeeds and infeeds could be reduced to insure surface quality. Greater crossfeeds apply greater loads to the wheel, thereby increasing the probability of grinding burns. It is suggested that the crossfeed rate be reduced from 0.100 in./pass to 0.050 in./pass. The infeed rate is very important to surface integrity. It is suggested that a lower removal rate (0.0005 in./pass) be taken closer to the finish (0.002 in.) for rough grinding. Best finishing results are obtained at 0.0002 in./pass for such high strength steels.

Cutting fluids are also very important in low stress grinding. A sulfurized oil is best suited for this process. Oil based types include neutral fluids which do not give as much aid to the cutting process as a sulfurized oil. However, most machine stops have a certain cutting fluid generally used throughout the shop and changing this requirement in all shops would be difficult and impractical. It is suggested that sulfurized oil be mentioned in the specification as a recommended alternate to be used in low stress grinding procedures whenever possible.

From Metcut's past experiences, it was felt that an accurate definition of grinding wheel and dressing procedure was very important for achieving efficiency in grinding. A typical dressing procedure used for low stress grinding was to make 5 passes at 0.001 inch depth/pass with 2 sparkouts. The diamond traverse rate was 1 inch/7 seconds. It is suggested that this dress procedure be included as a part of the low stress grinding specification. A faster rate and greater depth of pass results in a rougher surface and increased diamond abuse. Slow rates with multiple shallow passes create maximum stress concentrations, although a smoother wheel is attained. The proper dressing procedure is one which utilizes the fastest rates while still maintaining an acceptable degree of surface roughness.

Under the scope of this program and with the amount of available material, an attempt was made to obtain the most comprehensive information possible regarding the conventional machining of ESR 4340 steel. All the machining operations were found to be extremely difficult and application towards production parts appears to be unfeasible. Reduced feeds and speeds still resulted in tool lives which were shorter than desired. Low stress grinding techniques do appear to be applicable to this material. Efforts are being made to incorporate the recommended changes to the low stress grinding specification. The extent of actual changes will be determined by the compromising effects of reduced production rates and increased quality. Table VII summarizes the results obtained, presenting the best tools and conditions for each of the machining operations investigated in this program. In view of the results, the program has been cancelled and studies regarding possible alternative methods for machining ESR 4340 steel are being considered for a new program.

OPTIMUM CONDITIONS FOR MACHINING ESR 4340 STEEL TABLE VII.

Cutting	Fluid	Dry		Chlorinated Oil		Dry	_	Dry	
Width of	Cut					1 5/8 In.	Corner angle: 45°	0.375	: 10° 3°
) Depth	of Cut	0.005 In.	Side Relief: 5° End Relief: 5°	1/2 In. Through	Helix Angle: 29 ⁰	0.060 In.	Corner	0.060 In.	Per. Cl.: 10 ^o 45 ^o End Cl.: 3º
-	Feed	0.050 In./Rev	SCEA: 15 ⁰ ECEA: 15 ⁰	0.0008 In./ Rev.		0.0085 In./ Tooth	ECEA: 45° Relief: 5°	0.002 In./ Tooth	ECEA: 1º Corner Angle: 45º
Cutting	Speed	500 Ft/Min	Tool Geom.: Back Rake: -5° Side Rake: -5°	5 Ft/Min	Pt. Angle: 118° Relief Angle: 112°	100 Ft/Min	Tool Geom: Axial Rake: -5° Radial Rake: -5°	100 Ft/Min	Axial Rake: 7 ⁰ Radial Rake: 5 ⁰
	Tool	Kendex K-090 Ceramic	Tool Geom. :	M-42 H.S.S. Crankshaft Pt.	Tool Geom.: Pt. Angle:	Carmet CA 310	Tool Geom:	TRW Helical Brazed-On Carbide	Tool Geom: Axial Rake: Radial Rake
-	Operation Turning		_	Drilling (1/4 In. Dia)	-	Face Milling		Peripheral End Milling	

Surface Wheel Grade: A46 HV

Grinding Wheel Speed: 2000 Ft/Min

(Low Stress) Work Speed: 40 Ft/Min

Cross Feed: 0.050 In. / Pass
Fluid: Sulfurized Oil

Downfeed: 0.0005 In. / Pass to 0.002 In. of Finish
0.0002 In. / Pass Finish Grinding
Wheel Dress Procedure: 5 Passes @ 0.001 In. / Pass
2 Sparkouts
Diamond Traverse Rate: 1 In. / 7 Sec

CONCLUSIONS AND RECOMMENDATIONS

This study regarding the machining of ESR 4340 has led to the following conclusions:

- Conventional machining methods are not applicable to this material.
 Tool lives remain short despite reductions in feeds and speeds.
 Material removal rates are lower than those which can be used for other high strength steels.
- In ranges above 50 Rc, slight hardness reductions create great improvements in machinability, occasionally allowing tool lives to double.
- Turning and milling operations generally gave the best results when machining was done without cutting fluid. Drilling was aided by the use of chlorinated cutting fluid, while grinding was best done with sulfurized oil.
- Low stress grinding techniques are applicable to this material, when proper dressing procedures and reduced rates are used. The results of this program indicate the need to revise the low stress grinding specification for ESR 4340 steel regarding dressing procedure, cutting fluids and cutting rates.

Based on the results of the program studies of alternative methods of machining ESR steel is recommended. Although not used during the course of this program, previous studies indicate that Borozon (cubic boron nitride) wheels should be considered for surface grinding operations. They are highly resistant to wear and allow higher grinding speeds for greater productivity. However, the wheels are extremely high priced, often more than ten times the cost of equivalent aluminum oxide wheels. The Borozon wheel is best suited for grinding situations which occur repeatedly.

APPENDIX A

A compilation of data obtained primarily through a literature survey conducted at the Machinability Data Center. The data consists of conditions used in attempts to machine various high hardness materials (50 Rc and above) which approach ESR 4340 steel. The information was used to help establish a starting point for tools and parameter values in our own machining investigations involving ESR 4340 steel.

TURNING WITH CARRING AND HIGH SPREED STEEL TOOLS

	hearland					: 1	. 1	,	•	,	•	. 013	. 015	5,0.		. Gis	. 065	680.	090.	.060	090.	090.	٠. ن	. 615	. 208	C13	. 0.5		5.50	. 615	. 21.5	
	•	7	•) ;	, ,	•	1	•	•	,		il 30	11 10	il 28		11 10	11 60) i1 28) i1 10)	11 30	11 30									17:2	
	Cutting	77.		, ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ <u>}</u>	Dry	Dry) id	Dr.		So! 03	Sol 0	So 1 0:	(1:20)	So 1 (2)	Sol C	(1:20) So. 0)	(1:20) Sol Oil	Sol 03	(1:20) Sol (0)	(1:26) Sol D	(1:20) Dry	Dry	Dry	Dry	ūry	,	Dry	5ry	ory o	(1:20)
			, () C	9 5	0	0	0	0	0		JE J.	.030	.030		.030	.030	.030	050.	.030	.030	.050	.030	.030	.030	. 030	.030	1	3/1	1/8	. 030	!
	£ 11.7	51	٠ <u></u>) (/ -	13	12	5.	13	15	15	•	17	13	45		10	13	15	15	15	15	15	15	15	15	15	15	1	5	Z.	15	
	μ () () ()		י אַ	1 12	15	15	12	15	12	15	,	:O	45	45		45	S	ເກ	Ŋ	ın	Ŋ	'n	3.5	13	45	45	45	,	50	50	15	
	י אַט יִּינִיטָּנִ		٠ -	0 -	10	01	10	10	10	10		ın	מי	'n		'n	S	ស	ın	Ŋ	Ŋ	Ŋ	S	ເກ	ın.	S	ເກ	•	ò	, O (ر ا	
Side	Fake	0	, c	· c	9	0	Ö	0	0	0	ı	0	0	O		O	10	10	16	10	10	10	۱ در	. 5	r)	5	s ·	•	- I.;	.:: 	is I	1 1 1 1 1
Buck	Ke. ke	4	, <u>c</u>	9 64	8 5	-13	-23	-23	-23	-23		- 7	- 7	- 7		- 7	0	0	0	0	0	0	. 5	ا 5	∞	∞ ·	œ	1	ο	တ ၊	'n	
	iecd (int)	1 200	500.	500.	.003	.012	. 003	.005	.008	.012	. 005	.005	.005	.003		. 005	.005	.005	500.	.007	.007	.067	.005	. 035	. 005	.003	. 005	.004	.0105	. 0105	. co.	``
·	Siced (For)	53	Ş	. (X)	*7	56	75.5	99	49	36	7.5	5 5	110	20		65	10	15	20	10	15	20	125	175	200	250	200	OS (100	170	207	7
i-	Material	505	T15E6	T15%5	TISKÓ	TISKo	7.15K6	T15K6	T15X6	11586	2	ប	C3	9.0		90	715	T15	715	342	N42	142	C7 (K7 II)	C7 (K7 H)	C7 (K7 H)	C7 (K7 i.j)	C/(N/15)	50	(7(350)	()(220)	0/C	
Depth	(1n)	800	020	. 020	.020	020.	0.00	.010	010	0.0.	000.	. 062	.062	. 062		. 062	.062	.062	. 062	.052	.662	.062	. 962	. 062	. 562	.062	700.	071.	050.	0.00	080.	
	Condition		1/0	ر در د	(1/0	£5	1./>	Ç/1	Q/T		•	C/1	Q/T	7./0	i	<u>↓</u> ∕	2/T	Ç/T	Q/T	Q/T	Q/T	9/7	٠/٦	Q/T	1/2	7/7	- (-)	1		1 7	· F	ঈ
	rice cities a	63-63	(3-00	50-61	65-51	69-61	Ø8-56	55-59	38-59	68-89	· Ω	(n)	57	5.7	;	57	56	99	36	26	Só	36	50	56	95	55	٠ د د	7.	, n	7 P	. 10-03	3
	Material	:	EKEL 2M Steel	Lhhl2W Steel	EARLIN Steel	EASLEN Streit	TABLEM Steel	TABLIN Steel	EkhilM Steel	EARLIN Scool	2620	() () ()	0	201:		30 t t	300M (HSS)	36.3% (HSS)	300M (HSS)	300% (BSS)	300M (HSS)	306% (HSS)	570% Carbide	SCSM (Carbide)	Such (Caratte)	Scor (Carbide)	SOUN (Carbide)	3101	00000	101. 3053.	(A) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-
																		-										-				

THAN ING WITH CARBITH AND HIGH SPETE STEEL, TOOLS (cont)

	Hardness		Depth of Cut		ponis	Feed	Back Rake		. 45. 9				Tool Cutting Life	ان عداد
Naterio!	2	Condition	(30)	Material	(rpm)	(ipr)	(dcg)	(gob)	Relief	CEA	SCEA	, K.		(:4:)
1:5 8-4-45 (1155)	៊ូវ	Martemp	. (uó2	M:2	09	500.	0	13	Ŋ	15	13	. 630	Sol Oil 85	\$10.
(SSI) 5+-+-6 (HSS)	51	Martemp	.062	N42	92	.005	0	10	'n	15	15	.030	Sol 011 17%	.060
HF 9-1-45(H5S)	51	Martenp	. 062	9	09	500.	° .	10	w	15	15	.050	(1:20) Sol 0:1 SC	(90.
1P 9-4-45(11SS)	53	Martemp	. 062	N2	65	.005	O	10	S	13	15	.030	Sol 0il 25	099.
(88) 6-1-12(188)	51	Martemp	.062	C8 (K7H)	300	.007	'n	2	S	5	15	.030	(1:20) Sol 0:1 24	510.
NP 9-4-45 (HSS)	31	Martemp	. 062	C8(K7H)	355	.007	1	5	ī	15	15	0€9.	(1:20) Sol Oil 10	5.0.
HF 9-4-45(HSS)	5.1	Martemp	.062	CS (K7 !!)	375	.007	ı S	Š	ß	15	13	.030	(1:20) Sol Oil 5	. 613
HT 9-4-43(BSS)	3.1	Nartemp	.062	C6(370)	200	.007	vs '	1	s	15	15	.030	(1:20) Sol Cil 20	.015
HP 9-4-45(HSS)	31	Marremp	290.	C6(370)	250	.007	S	S	s	15	15	.030	(1:20) Sol 0:1 7's	515.
HP 9-4-45 (HSS)	51	Martemp	. 062	C8 (K7 H)	300	.010	. 5	'n	S	15	15	.030	Sol 021 9	.015
	S 60 60		050.	350 Carbal	175	.010	00	00	۲,	15.	15	.032	Dry 100	310.
	30	,	.050	550 Carbal	250	010.	0	0	7	13	15			\$10.
7 11:	20	•	050.	550 Carbal	290	.010	0	0	7	15	15			510.
1310	20	D/,T	. 062	C7 (K7 il)	300	.005	. 5	٠ ک	Ŋ	15	15			.015
011	20	٠/٦ زز	. 062	C7 (K7 H)	400	. 005	ו מו ו	ر د د	S I	15	15		Dry 12	.015
0.70	0 5	- \ - \	. 062	C7 (N718)	500 275	.005	ו ו	י ו	יו נע	15	15		Dr.v.	is 10.
0110	0 0	· <u>·</u> ·	200.	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	350	.005	י י	ı ı	יט ני	51	15		Drv 10	. 015
1310	30	1/0	.062	C6(370)	200	. 005	. 5	. 5	Ŋ	15	15		Dry 27	. 615
1310	50	Q/T	. 062	C6(370)	250	. 005	٠ د	. 5	Ŋ	15	15			.015
1310	20	Q/T	. 062	XL-88	275	.005	٠	- 5	'n	15	15		Dry 25	.015
	50	7/0	. 062	516	200	. 605	S	5	S	15	15			. 015
4540 0ESR	28/35	Normalized	.125	TNMG-452 Sandvik	110	. 004	·			ı	•		Trim Sol - (20:1)	
1310 OESR	28/35	Normalized	.200	UCIUZS TNNG-432 Ceratip 30	150	.004	١	1	ı	ı	•		Trim Sol - (20:1)	•

heurland (in.)	.015	. 015	010.		•	540.		.013	.015	313.	8 TO:	o .	.615	Š	0.10	. O. S	.015	.013		. 915	•	•	. 015	.015	.015	.013	.015	5.0.	.015	010.	.OIS	.015	525	570.	. 015	970.	. 615	 	
Tool Life (min.)	30	30	69	09	1	1/2		10	0.7	<u>ي</u>	S .	0.1	56	6	ۍ د م	67	.: 8	17		۲-	23%	152	35	19	12	20	CI CI	1	30	1	31	25	12	18	07	23	15	04 00	
Cutting Fluid	Dry	bry	Dr.)	Dr.y	! ! ! !	Dry		Dry	Ury	Ory	Dry	ury	Dry	į	ory ,	ory	Dry	Dry		Dry		1 1 1 1 1 1 1	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Ory Ory	
N. R.	.030	.030	.030	.030	1	1/16		.045	. 045	.045	245	.045	. 045	5	0.00	. 53	.045	.045		.045	1 1 1 1		.030	.030	.030	.030	.030	.030	.030	1	.030	.050	.050	.030	.030	.030	.030	.050	
SCEA	15	u)	15	15		13		13	15	15	15	2	15		<u>.</u>	2	15	15		15			15	15	15	15	15	15	15		15	IS	121	15	13	15	13	15 15	
ECE ECE	3.5	.,	15	15	1 1 1 1 1 1	15		13	15	15	15	?	15	<u>.</u>		7	15	15		15		1	15	15	15	15	15	15	15		15	15	15	15	15	15	15	15	
Relief	ĸ	S	ເລ	S	1 1 1	Ŋ	,	N	Ŋ	Ŋ	ທ່າ	n	ະນ	L	י ט	ກ່	พ	S		'n	1 1 1 1		Ŋ	S	נא	ເກ	Ś	S	Ŋ	. P2	Ŋ	Ŋ	Ŋ	S	S	ın	Ŋ	s s	
Side Rake (deg)	. 3	ı,	ı	۰ ی	32	- 5	,	ı	۱	ı S	, S	'n	Ŋ	u	ה ו	<u>،</u> د	'n	ı S		, S	24 Pt	23 P4	. 5	'n	٠ ک	i U	ı I	- 5	. 5	TB-123	ري د	. 5	ca T	ις I	رې	. 5	ı	ν. Ι Ι	
Back Rake (deg)	S	'n	٠	'n	TNG-3	in !	•	ı	ı S	'n	ري ا	ر د	ı,	ų	n .	n I	'n	ا 5		ı V	TBT-124	TBT-123	ı S	ı,	'n	ı	٠ ک	ı.	, S	TATR;	- 5	ر د	5	ı	- 5	ı	ı S	ı ı Na	
Feed (Apr.)	. 002	.001	. 001	. 002	600.	.005	,	. 005	.005	. 005	.005	. 00°	.005	300		SDO.	. 005	.005		.005	.0115	. 0115	.005	.005	.005	.005	. 005	.005	.005	.0075	.005	. 005	.005	.005	.005	.005	. 00.5	. 005 . 005	
Speed (fpn)	009	009	009	000	235	300	:	340	315	240	400	0//	009	30%	0 1 0	222	350	700		800	464	544	550	009	700	009	700	800	670	200	700	750	836	700	909	009	009	009 9	
lool Material	SNC432	SNC432	SNC432	SNC432	Baxton DBA	95% Hfn	552rt2	0:-0	0-30	CCT-707	_		40 Erf2 60 TaN	40 2rB2	00-0	0-20			40 Irb2	5 0 TaN	0-30	0-30	JH ,	40 Ta-10Mo	Witrided	CHF-50Ta	SE-0113B	Nitrided	-Nitrided	0-30	0-30	0-30	0-30	Act 1	900	AMA 68	DEA	707 C06	
Depth of Cut	.020	020	. 030	.010	. 013 050	030.		35C.	.050	.050	050.	050.	.050	0.10	000.	050.	030.	. 050		.050	1/8-3/16	.015	, C050.	_	620.	C050.) oso.	_	_							. 062	. 002	. 062 . 062	
Gendation	1/0	L Ó	٠/٩		280-300 Asi	•		1./0	Ų,',	Q/T	T/>	· >	1/0	i,	- F	- ! ->	O/T	0/1		7/5	,	•	,	Q/T	7/0	Q/T	Q/T	Q/T	Q/T	:/0 .	T/9	Q/T	٠//٢	7/0	Q/T	0/1	0/1	۲/9 ۲/٦	
Hardness Re	36	ž.	S S	909		č: . 5	1	5.5	53	55	וח נ עו נ	cc	55	ť	? :	Ç,	53	53		S.	(a)	52	5.3	52	5.0	뎚	52	5.2	52	50-51	50	20	5.0	50	20	20	30	08 8	
Natorial	机分离	300%	EC.32	1 2000	075	0757		7517	2010	15:10	3717	2757	0:57	ć :	0 * * *	2101	01:1	0127		C+2+	1013	6107	0727	45:10	C 100 1	6.55.5	0.550	1310	1340	5115	4340	0:2:	0721	1310	1210	1340	1310	0151	

(cont.)	
VII CERNIIC TOOLS	
THEN INC WIT	The second secon

	Wearland	ŧ	t	•	010.	010.	.010	.010	,	•			.001	•	1		ı	.013	.015	.015	. 015	. 615	379	.015	5.0.	E . C .	510.	S.5.	.015		:3. :3.	.015	3.6	5:0.	(z, (и С.	o:0.
	Tool Life (min.)	120	25	15	'n	ເດ	S	2	13	63		1	30+	6	o,	6.5	•	26	î.	10	10	10	(- \ - T	10	36	0.1	3 3	ζ.	9	2-1/3	55	C1	22	11	ລ ເ	ر ا 10	2
	Cutting Fluid	\$01 0il	(02:1)	1	Dry	Dry	Dry	Ury	Dry	Dry	Dry	Dry	Dry					Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	5ry.	Dry	Dry	Ory.	Dry	Dry	Dry	Dry	Dry	Dry	Dry	ury
	N. R.				1/16	1/16	1/16	1/16	11/32	11/32	$\frac{3}{16}$	•			1		1/16	.045	. 045	.045	.045	. 045	.045	.045	.045	. 045	.048	. 045	.045	.045	.030	.030	.030	.050	.030	.030	000.
	SCEA	1	1	! ! !	30	20	30	30	09	09		•	1	1 1 1 1		*****	20	45	45	57	15	5.7	15	13	T.	12	45	45	45	45	45	45	57	15	.n		CT
	TOE TOES	•		1	•	١	٠	ì	13	15	,	1	1	* * * * * * * * * * * * * * * * * * * *			20	45	45	15	15	15	17	13	13	45	45	45	45	45	ιΩ VI	45	13	15	15	رد ا	72
(-)	Relief	ις	;		ı		•	•	'n	Ŋ	,	1	CLE				,	'n	Ŋ	S	S	w	w	S	ι ς . Ι	Ŋ	Ŋ	Ŋ	ιν	S	ı.	ιζ	เว	s,	.a (ഹ	ņ
3 3	Sije Rake (deg)	'n			3	S	,	'n	0	0	-25	-25	LEAD ANG	35	85	85	,	0	0	2	5	. 5	ı	٠	ري د	0	0	0	0	0	, 5	3	i C	۱ دی .	л ⁽	SP U	'n
10. 10.	Buck Rake (deg)	ig I	RNG-43	RNG-43		ın ı	ı v.	'n	0	0	-25			TDT:L-{	TDT!	TDTR-8	-10	- 7	- 7	, S	, S	ı,	is I	ار ا	in i	- 7	- 7	- 7	f .	- 7	SS	<u>«</u>	in I	in i	љ (1	ı M	r R
מוז זון כבו	Feed (1911)	. 52	900.	.010	8 00.	. 004	soo.	.004	.003	. 005	. 0065	. 005	300.	.0105	.0105	.0105	.0025	.005	.005	.003	.005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	.005	.005	. 005	300.	. 005	.003	.003	500.	TON.
7	Speed (*pr)	27.5	52-81	150	572	25.0	250	550	6.00	400	1050	009	340	80	80	115	280	200	225	200	110	215	150	280		\sim 1	300	150	200	250	325	575	230	650	00/	009	000
	Tool Material	EZN.	Baxton DBA	Baxtor DBA	VR-97	VR-97	VR-97	VR-97	0-30	0-30		SQT165 PO	VR-97	0-30	0-30	0-30	500	CCT-707	CCT-707	CCT-707	CCT-707	CCT-707	CCT-707	0-30	0-30	60Tan-40ZrB	CCT-707	CCT-707	CCT-707	CCT-707	Baxton DBA	e :	Act I	Act I	Act 1	500	/カーと^
	Depth of Cut (in)	. 045	1/32-1/8	1/32-1/8	001.	. 100	.100	.100	.015	.015	, 010.	•	1/32	.015	. 0025	.013/.018	J	. 062	. 062	050.	.050	050.	.050	.030	020.	. 050	.050	.050	. 050	. 050	.062	. 062	.010	. 010	070.	010.	010.
	Condition	Hardened	Hardened	Hardened	2/7	7/7	₹/T	0/1	Q/T	0/1	Q/T	•	•	Carb.	Carb.	Carb.	1	Q/T	Q/T	7/7	7/0	Q/T	7/0	Q/T	7/0	7/7	Q/T	1/0	Q/T	-0/T	C/T	٥/٦	7/0	Q/T	:: <u>:</u> : : : : : : : : : : : : : : : : :	- L	څ
	Hardness Rc	89	63	59	55	63	63	63	63-60	63-66	62-65	c0-62	60-62	69	09	ĊŨ	00	57	57	<u>3</u> 6	26	56	56	26	95	26	56	56	56	95	56	56	26	56	کر د	55 25	
	strerial	521100 Reils	Steel Forging	Steel Forging	52100	52100	52100	50 TES	52130	51100	8::1	5003	Mill Rolls	Allow Steel	Alloy Steel	Ailoy Steel	Selle Forged	2021	1100	P. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Seac	ဦင့်ခင	Diac	Desc	Deac	[·Sac	วิการ	:.53c	2552	Deac	300%	3,70%	5503	1003	1000 F	第200m	2005

Ü	
Z	
Li	ļ
\exists	i
Ξ	i

			Ċ	Ę.	70000		D. :. 4					:
	•	,		1001	Obeed	Dee 4			Chisel	i e i k	To:ot	Catting
Material	Hardness	Cond.	Die.	Math	F N	E.	An 2. F	Relief	Edge Ang.	Ang.	Grind	D
Thermolds	90	D/T	50	M-33	0.2	. 6035	135		100	12	,	10 + S
zsco Jet 1	O in	Q/T	50	Nf-23	40	.001	118	7	•	67	Crk.	
\$ C0	50	D/T	90	M-33	40	.0015	118	7	ı	59	Ork.	:: (V)
"asco Jet 1000	50	D/T	50	M-33	Cř	.0015	118	7	•	5.9	Crk.	ថ្ម
٠,٠	n O	D/T	50	T-15	30	.001	118	2	•	56	Crk.	ហ
1040	52	•	50	H-15	20	.0005	06	7	•	29	Std.	SCL
. 1.	51 17	ı	20	I-15	40	. 6000.	. 90	7	•	53	Std.	SCI
0707	52	D/T	2.5	1	3.0	. 601	135	Ŋ	•	12	Notch	CL
	52	D/T	57	•	0 4	.001	135	ເດ	•	12	Noteh	.7
•1	55	T/Q	57	,	50	.001	135	Ŋ	•	12	Noten	J
4340	52	D/T	50	M-33	30	9000.	135	•	110	~1 (·1	Noten	Su-01
• 1•	52	Q/T	ŀΩ	M-33	30	9000.	,	ı	•	12	•	•
O#107	52	Q/T	rΩ	T-15	30	.001	118	7	,	58	Çrk.	ລ <u>ເ</u>
Vasco Jet 1000	52	D/T	S	M-33	40	.001	118	7	•	513	Crĸ.	Sa
asco Jet 1	52	D/T	ın	M-33	40	.0015	118	2	ı	59	Crk.	Su
ί. 1.	52	D/T	.250	T-15	20	.001	118	7	1	59	Crk.	on on
(A)	$\overline{}$	•	S	T-15	15	.001	130	•	Chamfer	,	Std.	Su-CI
0115/0217	2/5	Q/T	'n	C-2	100	.001	118-135	c ·	130	59	Cry.	Su-CL
DEAC	U Fr	T/O	S	M-33	40	.001	06	7	•	59	Ç.k.	S
Déad	54	Q/T	5	M-33	20	.001	06	7	1	59	Crk.	:: W
ひとみご	in) -11,	D/T	iU	M-33	09	.001	06	7	1	59	Crk.	ល
MX-2	10 44	D/T	5	M-33	4.5	.001	06	2	1	, 59	Crk.	Su
MW-2	5.0	Q/T	S	M-33	20	.001	90	2	t	53	Crk.	Su
4340	. 79	D/T	S	C-2	27	.0015	ı	1	ı	ı	•	Sol. Oil
953V40	54	_	LΩ	C-2	150	.001	118	12	ı	2.0	Stď.	ij O
0101	5.0		.250	1	66	.001	140	,	110	0	1	Sol. Cil
-340	ល	1/0	ın	T-15	30	.001	118	7	•	29	Crk.	Su
300M	55		Ŋ	T-15	15-20	.001	118	12	•	58	Stc.	Ċ
300%	in in	_	5	M-42	10	.0005	118	12	,	57	Crk.	01-0
300M	55	_	.250	C-2	140	5000.	118	12	ı	2.9	Crk.	CL-C
300NE	55	_	.250	C-2	140	.001	118	12	ı	53	Ork.	0-70
0514/0715	54/56	D/T	.250	C-2	7.5	.001	118-135	۲.	130	58	.; .;;	3r-Ci
D6A C			'n	C-2	105	.001		ł	ı	ŧ		CL
Thermol D J	57	Q/T	.250	M-33	06	.001	140		110	12	,	Sol. Oll
Désc			Ś	C-2	105	.001	•	ı	•	ı	ı	J U

	d	Çĭ	5	ij	80.00	ij	•	::5	.; .;	5
Flute Court	•	.082	ŧ	ť	1		1	1	,	,
Flute Deoth		.072	t	ı	,	t	1	ŧ		ı
Land Width		060.	660.		ı		i	1	1	× 1
Hook Angle	1	0	i	ŧ	15	3	ì	ı	~1	ı
Speed FPM	μ)	ស	20	i	9	ហ	'n	'n	10	'n
7,0 Thds.	75	.75	ි ග ශ	Ŋ	9	09	09	09	09	09
Tap Mat'l.	M42	Mic		90	HSS	M10	M10	M10	HSS	MIO
Flutes	М	£14	431	ala	ı	√,	4	74	•	₹ं।
Thas.	24NF	24NF	24NF	18N C	20NC	18NC	i 8NC	18NC	SONC	18NC
Tap Dia. In.	5/16	5/16	5/16	5/16	1/4	5/16	5/16	5/16	1/4	5/16
Condition	I/O	0/1	C/T	T/C	2/1	D/T	I/O	T/Q	D/T	D/T
hardness	iù iù	Ω 4.	52	01 01	000	5.0	50	50	50	50
Material	#400 000	Déac	C#8#	4340	[[-]]	Vasco Jet 1000	Vasco Jer 1000	Vasco Jer 1930	0787	० स्टब्स

MILLING

) ()		7	7 ? !!		0.15.40		చ్చు			Ċ	(Tool	Near.
					1 1 1 1		ום ייי	יי לייני		-	(XIIau	Corner	Cutting	- II	ا ا ا
ان	10.25	<u>COGGGGGGGGG</u>		N.41 1.	7		Kake e	Make	AN. Pel.	Kad. hel.	A LICELA	3251e	An2) e	014		
t	၁င	Hob	611.		23	9:00.	,	- 15	•	15	•		•	S	66	316
	56	Face	0.0.		26	900.	Ü	-15	10	10	ഹ	•	44		,	. 916
Vacco Jet 1000	5 6	F ACB	050.		173	.0057	•	ж •	•		ı		0		ar O	. 015
7	5.5	Ford Control	000.		500	. 002	c	0	3	10	ι	0	45		0071	C1
3000	53	End	.015		70	.002	0		3	10	•	0	л. 11)		,	. 20c
30.2 M	u S	End	000		550	.002	c	၁	m	0	ı		,		500	61
2.0.5	55	Ead	0000		009	. 002	0	0	3	0.	•	0	4		300	.013
51-50	ÜÜ	Face	.025		29:17	'n	0	-45	~ r	٠r	·	•	,		C	. 000 ·
CS-33	if:	ace :	.100		175	3.75	,	0	3	2/10	•	۳-	,		٠;٠	. 0003
OF III	10	Face	. 100		175	3.75	1	0	3	2/10	,	۳ ا	•	6	61	900.
	55	11 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	570.		175	3.75	,	0	e)	2/10	1	۳,			ر ان	0
C5-11	161 111	Tace	. 075		153	2.87	,	0	٣	2/10	•	۳			14.2	C.E.O.
0FAGSt	7°	Face	090.		100	.002	3	ر رئ	ເດ	ហ	in T	•	45		160	570.
9cBV40	T (0	· Enā	. 125		200	.001	5.	ر ر	ın	ឃ	٠	ur 1	0	, A	215	. 312
0F.2G40	in tr	End	. i25		300	.001	ພາ	.5	'n	ıΩ	,	ពេ	Ö		125	.012
三.50	5.4	Rout	. 025		1200	20	۲,	0	٣	2/10	45	۳	45		175	. 002
75-M	T'	End	. 325		1200	'n	-3	၁	m	2/10	45	۳)	4.5		r;	. 958
E-30	# 10	Stot	.025		1200	ťΩ	۳,	0	3	2/10	4.5	۳,	Δ , 1U		ر. در	. 262
111111111111111111111111111111111111111	5.4	Kob	. 020		7.0	.002	0	0		13	•	1	1		100	. 30s
0,50,7	. t.	Face	0.00		170	.0046	1	,		,	, i	1	ပ		30	.015
HNOF	53-50	Heb			,		,	1		•	1	10	•	2	0-130	3.50
0.48.4	55	Face	001.		150	.005	0	-15	ೲ	20	'n	1	45		60	.018
:340	62	Side	001.		150	.0075	ιņ	- 10	۰.	α	ın	,	д. Ю		Ü	.013
() () ()	c) (c)	Slot	.250		200	.005	ij	- 10	מב	ω	-	,	in n			. 015
-14 (기) (그)	رن دا	Sad	.250		20	.0015	0	0	ເດ	15	m	35	44. IU	Ö	217	.010
	55	ਹੂੰ ਜੁਸ਼ਵ	. 0.62		n) 44	. 002	,			•	•			Sol. Cil	250	.015
4340	55	End.	. 062		63	.002		•		•	1			Sol. Ci	160	.015
0.40÷	۲. 2	End	.062		127	. 002			ı	•		ı		Sol. Oil	96	.016
1340	55	Face	. 100	C6(370)	180	.005	0-	-15	۰,0	9	'n	•	iŲ.	Dry	05	.015
11. W 41. C 4.	5.5	Face	. 100	<u>~</u>	188	.005	0	- 15	20	S	'n	,	เก าา *	Dry	٠Ļ را	2.5.
1340	52	Face		<u> </u>	180	. 005	0	0	7	7	5	1	35	Dry	09	. 015
(7) *# (1)	52	17 a C a		$\widehat{}$	425	.005	0	0	2	2	Ŋ		15	Dry.	10	.015
e: 1	52	Face	001.		125	.005	0	-15	50	သ	ហ	1	ጥ	Dzy.	8.0	010
Vasco Jet 1300	52	Side	. 100		150	.0075	0	-15	∞	α	5		ጥ	Dry	6.0	. 312
co Jet 1	52	Stot	. 250		200	.005	-5	- 10	∞,	æ.	-	•	45	Dry	0.0	. 012
100 Je 1	5.5	End	.250	33	G.	.0015	0	c	5	15	м		ነበ ፕ	Sol. O !!	105	.015

GRINDING

Surface Grinding

Rough Finish Conv. Conv. L. S. L. S. Rough Finish Finish Rough Finish Rough Finish	45 1 18 96000 Parts - 19 11 - 19	Su Su Su Su - Int'l. 131(40:1) 3%Sol Oil	A220M14DIAXI Su Su A80V9BC2ES Su A60JV A60JV 23A36MVBE Int 23A36MVBE Int B180N100V 3% A46SM-1 A80L6 Cir	4/ W 8/ W	.002 .0005 .00377 <u>internal Grinding</u>	226 70-100 70-100 130 - <156 975	8500-6500 5500-6500 6782 	61 60-53 60-53 53 53 64 62-61	52100 Ductile Iron Juctile Iron 41.5 52100 SHKH15 52160 Å
								.09	o ‹
•	ı	,	80LV	•	ı	ro r	0006	7	
•	ı	,	ROLV	•	•		0006	•	· ·
ı	ı		V.10X	•	•	ď	0006		00-01
								.09	52100
		(50:1)							
•	•	100E17	AOULO	•	,	713	71.7	3	
,	ı	(000)	A 10x A	•	,	975	5715	97-60	
•	다 다	•	A46SM-1	•	. 0003	170	7570	10-70	2
;	;	1				7317	9950	62.61	SEL 18
<i>.</i>	: ::	3% Sol O	BISONIOOV		•	•	1	2	00
								;	
					Internal Grinding			٠	
	<u>-</u>	131(40:1							
						.*			
Rough	19	Int'l.	23A36MVBE		00377	130	67.82		•
1161111 3		•		:				(•
- C-	•	•	A 60.1V	W /8	. 0005	70-100	5500-6500	60-53	tile Iron
Rough		•	A 603 V	W / 4	200.	001-01	0000-0006	00-00	11011 2:1:
		3				00.	000	22 47	The Table
•	•	S	ASOV9BC2ES	•	1	226	8500	61	00
	Parts	Su							
•	00096	ng T	AZZUM 14 DLAX						
					•	47	007	70-70	0
Finish		Su			•	24	7200	62-60	00
Rough		3	A 601V	8/∦ •	. 0004	70-100 24	4500-6000 7200	65-48 62-60	oy Steel 100
		نَّى	A 60 IV	W/W 8/W	. 0004	70-100 70-100 24	4500-6000 4500-6000 7200	65-48 65-48 62-60	o: Steel oy Steel 100
		تَ	A 60 IV		Cylindrical Grinding .002	70-100 70-100 24	4500-6000 4500-6000 7200	65-48 65-48 62-60	o; Steel oy Steel
•	Jβ	. رُ	A 60 IV		Cylindrical Grinding .002	70-100 70-100 24	4500-6000 4500-6000 7200	65-48 65-48 62-60	o; Steel oy Steel
۲. د.	•	تَ	A 80 P 4 V A 60 IV A 60 IV		Cylindrical Grinding . 002 . 0004	350 70-100 70-100 24	4500-6000 4500-6000 7200	65-48 65-48 62-60	Allo, Steel Alloy Steel 52100
	1	٠ . پر	A 80 P4 V A 80 P4 V A 60 IV A 60 IV		Cylindrical Grinding .002 .0004	350 70-100 70-100 24	12 000 12 000 4500 - 6000 4500 - 6000 7200	65-48 65-48 62-60	o; Steel
Conv.	4. ιυ	o	A46HV A80P4V A60IV A60IV		LS Cylindrical Grinding .002	350 70-100 70-100 24	2000 12 000 4500-6000 4500-6000 7200	50 - - 65-48 65-48 62-60	Mind Mind Alloy Steel Alloy Steel 52100
		Sol Su 	32A46K8VBE A46HV A80P4V A60IV A60IV	•	.001 LS Sylindrical Grinding .002	40 350 70-100 70-100 24	6000 2000 12 000 4500-6000 4500-6000	65-48 65-48 65-48	1-45 Marte 10 2. 3. 3. 5.eel 0. Steel 100
Conv.		120 Sol Su	32A46K8VBE A46HV A80P4V A60IV A60IV	•	.001 LS Cylindrical Grinding .002	40 350 70-100 70-100 24	6000 2000 12 000 4500-6000 4500-6000	50 50 - - 65-48 65-48	-45 Marte o. Steel oy Steel
	•	Sol. Oil 120 Sol Su	32A46H8VBE 32A46K8VBE A46HV A80P4V A60IV A60IV		.001 LS LS Cylindrical Grinding .002	40 40 350 70-100 70-100 24	6000 2000 12 000 4500-6000 4500-6000	50 ; 50 50 = 50 = 50 = 50 = 50 = 50 = 48 = 65-48 = 65-60	- 45 Marte 0 4 5 5 5 5 6 7 7 9 9 9 9 9 9 9 9 9 9
300		Sol. Oil 120 Sol . Oil	32A46H8VBE 32A46H8VBE A46HV A80P4V A60IV A60IV	•	.001 LS Cylindrical Grinding .002	40 40 350 70-100 70-100 24	6000 6000 2000 12 000 4500-6000 4500-6000	56 · mp 51 50	-45 Marte
Finish	7.5	Su - O Sol. Oil 120 Sol Su	A46H8V 32A46H8VBE 32A46K8VBE A46HV A80P4V A60IV A60IV	•	.001 .001 .001 L.S Cylindrical Grinding .002	40 40 40 350 70-100 70-100 24	6000 6000 2000 12 000 15 000 4500-6000 4500-6000	57 56 · 50 50 50 65-48 65-48	-45 Marte
Rough	7.4	Su - O Su - O Sol. Oil 120 Sol Su	32A46H8VBE A46H8V 32A46H8VBE 32A46K8VBE A46HV A60F4V A60IV A60IV		.0005 .001 .001 LS 	40 40 40 40 350 70-100 70-100 24	4500-6000 4500-6000 7200	51 56 · 56 · 50 50 65-48 65-48	c - 45 Marte o Steel oy Steel
rinish	10. 8 7. 4	Su - O Su - O Su - O Sol. Oil 120 Sol Su	32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE 32A46H8VBE A46HV A60TV A60TV A60TV	•	.001 .005 .001 .001 LS Cylindrical Grinding .002	40 40 40 40 40 350 70-100 24	4500-6000 4500-6000 4500-6000 7200	61 61 57 56 · 50 50 65-48 65-48	50 c c c d Steel by Steel
	10.8	Su - O Su - O Su - O Sol - Oil Sol Su - O	32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE 32A46K8VBE A46HV A60IV A60IV			40 40 40 40 40 70-100 70-100 24	6000 4000 6000 6000 2000 12 000 4500-6000 7200	mp 51 56 · 57 56 · 56 · 50 65-48 65-48	53 53 6 c 6 c 6 c 6 c 7 7 8 8 8 9 9 5 8 9 9 5 8 9 9 7 8 9 9 7 8 9 8 8 8 8 8 8 8 8 8 8
Rough	10.8	Su - O Su - O Su - O Su - O Sol. Oil Sol Su - O	A80 H or G 32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE A46HV A60IV A60IV	• • •	. 0005001 . 001 . 0005 . 001 . 001 L.S 	100-250 40 40 40 40 70-100 70-100 24	3000-3400 6000 4000 6000 6000 2000 12 000 12 000 4500-6000 7200	62-48 61 61 57 56 · 50 50 - - 65-48 65-48	So Steel -45 Marte o Steel y Steel
	10.8	Su - O Su - O Su - O Su - O Sol. Oil Sol Su - O	A46 H or G A80 H or G 32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE A46HV A66HV A60IV A60IV		. 0005 001 . 0005 001 . 0001 . 0001 . 0001 LS - Cylindrical Grinding . 0004	100-250 100-250 40 40 40 40 70-100 70-100 24	3000-3400 3000-3400 6000 4000 6000 6000 2000 12000 12000 4500-6000 7200	62-48 61 61 61 57 56 · 56 · 50 50 65-48 65-48	ov Steel 50 50 c c c c c c c c c c c c c c c c c
	10.00	Su - O Su - O Su - O Su - O Su - O Sol. Oil 120 Sol	A46 H or G A80 H or G 32A46H8VBE A46H8V 32A46H8VBE A46H8VBE A46HV A60IV A60IV	• • •	.0005001 .0005001 .001 .0001 .001 .001 .S .Cylindrical Grinding	100-250 100-250 40 40 40 40 70-100 70-100 24	3000-3400 3000-3400 6000 4000 6000 6000 2000 12000 4500-6000 4500-6000	62-48 61 61 61 57 56 . 56 . 50 . 65-48 65-48	50 Steel 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60
Condition	Ratio - 10. ¢ 7.4	Su - O	Wneel Grade A46 H or G A80 H or G 32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE A46HV A6HV A60IV A60IV		Down Feed (in/rev) .0005001 .0005001 .0001 .001 .001 LS .002 .002	Work Speed 100-250 100-250 40 40 40 40 70-100 70-100 24	(FPM) 3000-3400 3000-3400 6000 4000 6000 2000 12 000 4500-6000 4500-6000	Hardness 62-48 62-48 61 61 57 56. mp 51 50 - 65-48 65-48	ov Steel ov Steel 50 50 50 60 40 40 40 40 40 40 40 40 40 40 40 40 40
Grinding Condition	Ratio Ratio 10. 8 7.4	Cutting Fluid Su - O	Wneel Grade A46 H or G A80 H or G 32A46H8VBE 32A46H8VBE A46H8V 32A46H8VBE A46HV A60IV A60IV		Obw. Feed (in/rev) .0005001 .0005001 .001 .001 .001 .001 .001 .001 .001	Table or Work Speed 100-250 100-250 40 40 40 40 70-100 70-100	Wheel Speed (FPM) 3000-3400 3000-3400 6000 6000 6000 12000 12000 4500-6000 7200	Hardness 62-48 62-48 61 61 61 57 56 · mp 51 50 - - 65-48 65-48	ov Steel ov Steel 50 50 50 60 in ov Steel ov Steel ov Steel
Grinding	Grinding Ratio - 10. 8 7.4	Cutting Fluid Su - O	Wneel Grade A46 H or G A80 H or G 32A46H8VBE A46H8V 32A46H8VBE A46HV A60IV A60IV	. .	In Feed (in/pass) or Or Down Feed (in/rev) . 0005 001 . 0005 . 001 . 001 . 001 LS Cylindrical Grinding . 002	Table or Work Speed 100-250 100-250 40 40 40 40 70-100 70-100	Wheel Speed (FPM) 3000-3400 3000-3400 6000 6000 6000 6000 12000 12000 4500-6000 7200	Hardness 62-48 62-48 61 61 61 57 56 · mp 51 50 - - 65-48 65-48	ov Steel ov Steel 50 50 50 60 ov Steel ov Steel ov Steel
Grinding	Grinding Ratio - 10. a 7.4	Cutting Fluid Su - O Su	Wneel Grade A46 H or G A80 H or G 32A46H8VBE A46H8V 32A46H8VBE A46HV A60IV A60IV		In Feed (in/pass) or Down Feed (in/rev) .0005001 .0005 .0001 .001 .001 L.S Cylindrical Grinding .002	Table or Work Speed 100-250 100-250 40 40 40 40 70-100 70-100	Wheel Speed (FPM) 3000-3400 3000-3400 6000 4000 6000 6000 12000 12000 4500-6000 4500-6000	Hardness 62-48 61 61 61 57 56 . mp 51 50 - 65-48 65-48	Milov Steel Milov Steel Milov Steel Milov Steel Milos Diac Diac Diac Milos Steel Alloy Steel Alloy Steel

GRINDING Plunge Grinding

Grinding Cordition	1 1 1		
Grinding Ratio	000		
Cutting Fluid	Flowrex 109 E Flowrex 100 Flowrex 100		1 1
Wheel Grade	4460MéVL Flowrex 109 32A70MeVBE Flowrex 100 4660MéVL Flowrex 100		460K4V 12A80P4V A70K8V A60L5V A90P6V
Cross Feed (in/pass)			
In Feed (in/pass) or Down Feed (in/rev)	1 1 1	Internal Plunge	0.004 .004 .003
Table or Work Sneed	1218 1216 1216 1218		250 250 250 120 120
Wheel Speed	6620 6620 6620		12000 12200 12000 7200 7200
Hardness	0.0 ± 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		65 62-65 62-60 62-60
Nation 19	41450 41450 T-15		32.100 52.100 52.100 52.100

APPENDIX B

HMS 6-1121, Hughes material specification for electroslag refined 4340 steel forged billet.

All Ive			•					
	EFFECTIVE ON		E.O. TYPE	 ecifica	specification revision	AUTHORITY		•
	Next parts made		MAY BE PARTS REWORKED	ED	RECORD	MJO 0136	REL.DATE BY:	i
\vdash			MADE OK TO USE	SE ×	NOTED	CCN/MOD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	AFFECTED YES NO NO.	4 × × × × × × × × × × × × × × × × × × ×	AFFECTED YES A	o 3	AFFECTED YES NO	E.O. BY J. Preston	DRAWING TO BE CHANGED	}
oa I	DOCUMENT	REV.	SIGNIFICANT CHANGE	NGE	κ Σ Σ	GROUP DATE 18-10 65-26-76	APPROVED BY DATE	
HMS 6-1121		দ	Electroslag Refined 4340 Steel	efined	4340 Steel	SSY.	PETT / JOS.	<u> </u>
		_	Forged Billet			-	PE369A KS 20561-73	1 %
					•		1	K
							HOKINGTH 9-20-78	1 20
							Technolin S. 11-19	1
							NATA & PROPESS	17.
								0
							+	1
							SPANTSPANICES	7
							80.000 July	١٢
							in the second	5 5
							20115	از از
							(1	
							Sarlin 1 (7)	
REFERENCED E.O.'S	\$ 126568, 130696,	130876,	, 131222, 131361	-	31902			
REASONS & REMARKS	\$)						Е.О. ИО. 132148	
FORM 9022 REV. 2/74								

	REVISIONS		
LTR	DESCRIPTION	DATE	APPROVED
New	Released on EO 126568	05/29/71	
Λ	Released on EO 130696	08/15/75	
В	Released on EO 130876	12/23/75	ı
С	Released on EO 131222	08/12/76	
D	Released on EO 131361	11/21/77	
E	Released on EO 131962	03/24/78	•
\mathbf{F}	Released on EO 132148	09/20/78	

SCOPE: This specification covers electroslag refined (ESR 4340) steel

forged billet intended for use at the 280- to 300-ksi strength level.

CHANGES: (1) Editorial change to format.

- (2) Maximum carbon content in Table I changed from 0.43 to 0.41.
- (3) 3.10.1 adds new microinclusions requirements.

Change bars indicate technical changes only.

Mu is					
APPO C. Merch (LY)	6	Hughes Helic Division of Summa Con		Centinela and Teale Stree Culver City, California 90	
9-10-78 Statem Missal 9-20-78 Statement 9-20-78 C Monders 12.	TITLE	ELECTROSLAC	REFINGED BII	NED 4340 STEE	
9-20-18 3 (V.C' RITZ FM.	SIZE	CODE IDENT NO. 02731	No.	MS 6-1121	REV.
				SHEET 1 of 1	l

FORM 1642

MATERIAL SPECIFICATION HMS 6-1121 REV. F PAGE 2 OF 11

This page intentionally left blank.

Hughes Helicopters Civision of Sun ma Collegator	Centineia and Teale 5 reets Culver City (2avrornia 30230)	MATERIAL	SPECIFICATION	
. REPARED			5-9-74	
APPROVED			(F) OF 11	
TITLE: ELECTROSL	AG REFINED 4340 STI	EEL FORGED BILI	LET	

1. SCOPE

1.1 This specification covers electroslag refined (ESR) 4340 forged billet intended for use at the 280- to 300-ksi strength level.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents of the exact issue in effect on date of the invitation for bids or request for proposal form a part of this specification to the extent specified herein. In case of conflict between these documents and this specification, the requirements of this specification shall prevail.

SPECIFICATIONS

Military

MIL-I-8950

Inspection, Ultrasonic, Wrought Metals, Process for

STANDARDS

Federal

FED-STD-151

Federal Test Method

2.1.1 Copies of specifications, standards, drawings, and publications required by suppliers in connection with specified procurement functions should be obtained from the procuring activity or as directed by the contracting officer.

2.2 Non-Government documents

SPECIFICATIONS

Industry

Hughes Helicopters

HP 1-1	Heat Treatment of Steels, Nickel-Base, and Cobalt-Base Alloys
HP 6-5	Magnetic Particle Inspection
HP 6-19	Hardness Testing of Metals
HP 6-22	Ultrasonic Inspection of Metals
HP 6-25	Procedure for Determining the Mechanical Properties of Metallic Materials
HP 8-5	Identification of Detail Parts and Assemblies

OTHER PUBLICATIONS

Aeronautical Materials Specifications

AMS 2300		Premium Aircraft Quality Steel Cleanliness - Magnetic Particle
	•	Inspection Procedures
	•	

American Society for Testing and Materials

ASTM E 45	Determining the Inclusion Content of Steel
ASTM E 122	Estimating the Average Grain Size of Metals
ASTM E 353	Chemical Analysis of Stainless Steel, Heat Resistant, Maraging, and Other Similar Chromium- Nickel-Iron Alloys
ASTM E 381	Rating Macroetched Steel

Hughes Helicopters

FORM 1644A

OF

- 2.2.1 Technical society and technical association specifications and standards are generally available for reference from libraries. They are also distributed among technical groups and using Federal agencies.
 - 3. REQUIREMENTS
 - 3.1 Definitions.
 - 3.1.1 AOD. Argon-oxygen decarburized.
 - 3.1.2 ESR. Electroslag refined.
- 3.1.3 Ingot. A quantity of 4340 AOD or ESR steel melted in a single mold of a known size and weight.
- 3.1.4 Lot. A quantity of 4340 steel melted by the ESR process into an ingot and hot worked as a single unit to different product sizes and forms.
- 3.1.5 Melt. A homogeneous batch of 4340 AOD steel melted and solidified into ingot(s).
 - 3.1.6 RCS. Round corner square.
 - 3.2 Material quality.
- 3.2.1 The starting material shall be a single melt of 4340 argon-oxygen decarburized (AOD) ingot(s) or equivalent prior to remelting by the electroslag refining process.
- 3.2.2 The material shall be produced by the electroslag refining process using equipment specifically designed for electroslag refining of low-alloy, high-strength steels that has been approved for steel making by the Materials, Processes, and Standards Department of Hughes Helicopters.
- 3.2.3 The billet stock shall be hot worked in at least two longitudinal planes to ensure that minimum mechanical properties can be met in the transverse direction when heat treated and tempered to full strength level.
- 3.3 Forging temperature. The forging stock shall be heated to 2100° ±25°F (1149° ±13.9°C) for initial heating and shall receive a minimum reduction of 3:1 in cross section area. The finish forging temperature shall be within the range of 1700° to 1800°F (927° to 982°C).

- 3.4 Condition. Forged billet shall be supplied in the normalized and tempered condition in accordance with HP 1-1.
- 3.5 Composition. The lot shall conform to the percentages by weight shown in Table I.

TABLE I. COMPOSITION PERCENTAGES BY WEIGHT

Element	Minimum	Maximum
Carbon Manganese Silicon Phosphorus Sulfur Chromium Nickel Molybdenum Copper	0.38 0.60 0.20 - - 0.70 1.65 0.20	0.41 0.80 0.35 0.010 0.008 0.90 2.00 0.30 0.35
Aluminum	_	0.030
Iron	-	balance

- 3.6 <u>Macrostructure</u>. Full cross-section macroslab wafer prepared in accordance with 4.2.3 shall be free of cracks, pipe, bursts, segregation, flakes, seams, and other deleterious effects which would adversely affect static mechanical properties after heat treat.
- 3.7 Mechanical properties. The material shall meet the minimum mechanical properties specified in Table II after heat treatment per HP 1-1 to the HT condition.

TABLE II. MINIMUM MECHANICAL PROPERTIES

Direction	Ftu ksi (MPa)	Fty ksi (MPa)	El Percent	R.A. Percent
Longitudinal .	280 (2689)	200 (2275)	10	25
Transverse	260 (1793)	200 (1496)	10	25

- 3.8 <u>Hardness</u>. Material hardness tested in accordance with HP 6-19 shall meet the hardness requirements after heat treatment to the HT condition as follows:
 - a. Brinell Hardness, 535 to 578
 - b. Rockwell Hardness, Rc 54 to 57
- 3.9 Cleanliness. The product shall be uniform in quality and condition, clean, sound and free from foreign materials when magnetic particle inspected per 4.2.6.

3.10 Microexamination.

3.10.1 Microinclusions. The size and frequency of microinclusions shall not exceed the Jernkontoret limits as shown in Table III when tested per 4.2.7.

TABLET	TT 3.4	TODOIN	CLUSION	DATING
IABLLI	\mathbf{H} . \mathbf{M}	1CROIN	ICTO2ION	RAIING

Microinclusion Type	Dimensional Limitations Thickness or Diameter (inches)	Worst Field
Type A - thin	0.00016 max	1.5
Type A - heavy	0.00040 max	1.0
Type B - thin	0.0003 to 0.0005, excl	1.5
Type B - heavy	0.0005 to 0.0010, incl	1.0
Type C - thin Type C - heavy	0.00020 max 0.00035 max	1.5 1.0
Type D - thin	0.0002 to 0.0004, excl	2.0
Type D - heavy	0.0004 to 0.0010, incl	1.5

Note: For Types A, B and C thin combined, there shall be not more than three fields of No. 1.5A type, or No. 1.5B and No. 1.0C types, and not more than five other lower rateable A, B and C type-thin fields per specimen. For D type-thin, there shall be not more than three No. 1.5 fields, and no more than five other lower rateable D type-thin fields per specimen. There shall be not more than one field each of No. 1.0A, B and C type or No. 1.5D type-heavy per specimen. A rateable field is defined as one which has a Type A, B, C or D microinclusion rating of at least No. 1.0 thin or heavy in accordance with the dimensional limitations and the Jernkontoret Chart.

- 3.10.2 <u>Microstructure</u>. The microstructure shall be predominatly tempered martensite after heat treatment to the HT condition.
 - 3.10.3 Grain size. The austenitic grain size shall be 5 or finer.
- 3.11 <u>Decarburization limits for forgings</u>. Table IV defines acceptable limits for decarburization of as-forged products.

TABLE IV. DECARBURIZATION LIMITS FOR AS-FORGED PRODUCTS

REV.

 \mathbf{F}

Nominal Diameter or Distance Between Opposite Faces in (mm)	Maximum Depth of Decarburization* in. (mm)
- to 0.375 (9.53)	0. 010 (0. 254)
0.376 to 0.500 (9.55 to 12.7)	0.012 (0.305)
0.501 to 0.625 (12.73 to 15.9)	0.014 (0.356)
0.626 to 1.000 (15.9 to 25.4)	0.017 (0.432)
1.010 to 1.500 (25.7 to 38.1)	0.020 (0.508)
1.510 to 2.000 (38.4 to 50.8)	0. 025 (0. 635)
2.010 to 2.500 (51.1 to 63.5)	0.030 (0.762)
2.510 to 3.000 (63.8 to 76.2)	0. 035 (0. 889)
Over 3.000 (76.2)	0.045 (1.143)

^{*}The value specified as the maximum depth of decarburization is the sum of the complete, plus the partial decarburization.

Note: When determining the depth of decarburization, it is permissible to disregard local areas provided the decarburization of such areas does not exceed the limits of Table III by more than 0.005 inch (0.127mm) and the width is 0.065 inch (1.65mm) or less.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 Responsibility for testing.
- 4.1.1 Supplier responsibility. The supplier is responsible for the performance of all testing requirements as specified herein. The supplier may utilize his own facilities or any commercial testing laboratory acceptable to Materials, Processes, and Standards Department of Hughes Helicopters.

- 4.1.2 Hughes Helicopters. All incoming material shall be inspected upon receipt at Hughes Helicopters for compliance to the requirements specified herein. Each lot shall be tested. When more than one size of material is represented by a single lot, a sample from each of the following product sizes shall be tested.
 - 2.5 to 3.5 RCS or dia, in.

HMS 6-1121

- 4.5 to 5.5 RCS or dia, in.
- 8.0 to 10 RCS or dia, in.

Substitution or deviation from the above sizes shall be approved by HH Materials, Processes and Standards Department.

- 4.1.3 Process control documentation. Written procedures controlling fabrication, inspection, and testing of material shall be maintained by the supplier and shall be available for review by Hughes Helicopters.
 - 4.2 Testing requirements.
- 4.2.1 Chemical analysis. Chemical composition shall be determined by wet chemical methods in accordance with ASTM E 353, by spectrographic methods in accordance with FED-STD-151, Method 112, or by other approved analytical methods.
- 4.2.2 Ultrasonic. Each forged billet shall exhibit an ultrasonic quality per MIL-I-8950, Class A, or HP 6-22, Class B, as applicable.
- 4.2.3 Macroexamination. A serialized full cross-section macroslab wafer approximately 1 inch thick shall be taken from the top and bottom of the largest forged billet. The wafer shall be ground to an RHR 63 finish, or better, and etched in a hydrochloric-sulfuric acid mixture per ASTM E 381.
- 4.2.4 Mechanical properties. The material shall meet the minimum mechanical properties specified in Table II after heat treatment to the HT condition per HP 1-1, and testing per HP 6-25. Longitudinal and transverse specimens shall be tested.
- 4.2.5 Hardness. Material shall be hardness tested per HP 6-19 and meet hardness requirements after heat treatment to the HT condition.

4.2.6 Magnetic particle inspection. Each lot shall be magnetic particle inspected in accordance with AMS 2300 or HP 6-5 using a stepped down test bar and shall meet the cleanliness requirements of 3.9.

REV. F

4.2.7 Microexamination. A section of material taken in the longitudinal and transverse direction shall be examined for conformance to 3.10. Austenitic grain size shall be measured per ASTM E 122. The size and frequency of microinclusions shall be determined on a longitudinal section in accordance with ASTM E 45.

4.3 Reports.

MATERIAL SPECIFICATION

- 4.3.1 The supplier shall furnish with each shipment three copies of a test report for each lot to determine conformance to the requirements of Section 3 of this specification.
- 4.3.2 Records. Copies of these test reports shall be filed for a minimum of 3 years after completion of the contract and shall be made available to Hughes Helicopters personnel upon demand.

4.4 Identification.

4.4.1 Unless otherwise specified, each forged billet shall be marked in accordance with the requirements of HP 8-5, Type I, Class 3 with HMS 6-1121, lot number, manufacturer's identification, ingot number, and nominal size in inches. The characters shall not be less than 3/8 inch (9.6 mm) in height.

4.5 Rejection and retests.

4.5.1 If any of the tests specified herein fails, the lot represented by the failed specimen shall be rejected and shall be submitted to Hughes Helicopters Material Review Board for disposition.

Where stock sizes are furnished that have been qualified by first article testing at HH the supplier will be required to requalify the material in the event that reforging operations have been performed.

5. PREPARATION FOR DELIVERY

5.1 Packaging. All material shall be properly separated by size, shape, and condition, and packaged in a manner acceptable to common carrier for safe transportation.

- 5.1.1 Shipping containers, crates, boxes, or bundles shall be marked to give the following information:
 - a. Material ESR 4340 steel forged billet
 - b. Hughes Helicopters Material Specification (HMS) 6-1121
 - c. Condition normalized and tempered
 - d. Size
 - e. Quality in this container
 - f. Purchase order number
 - g. Manufacturer's name or trademark
 - h. Lot number '

6. NOTES

6. l Intended use. The process covers an electroslag refined steel forged billet at a 280- to 300-ksi strength level used in the manufacture of helicopters and their ordnance.

7. APPROVED VENDORS

7.1 Vendors whose products are acceptable under this specification are listed in Hughes Helicopters' Approved Vendors List (AVL) 1121.

APPENDIX C

Excerpt from HP1-1, Hughes Helicopter's heat treatment specification for steel. The excerpt describes the heat treat process established for ESR 4340.

Centified and Team Streets
Culver City Cartornal 90230

PROCESS SPECIFICATION

1. Table X. Heat Treatment of Special Steels

4340 Electroslag Refined Steel (ESR) (See HMS 6-1121)

Equipment - Normalize, temper (1175°F/635°C) and austenitize shall be performed in a vacuum furnace capable of meeting all of the requirements specified herein.

! Condition NT - Normalize at 1650° F ±25° F (899° ±13.9° C) for 3 hours minimum at temperature per inch (2.54 cm) of thickness, and cool in inert atmosphere. Temper at 1175° ±25° F (635° ±13.9° C) for 3 hours per inch (2.54 cm) of thickness; air or furnace cool.

Condition HT - (Material must be in condition NT prior to heat treating to condition HT). Austenitize at 1525° F ±25° F (829° ±13.9° C) for 3 hours minimum at temperature per inch (2.5½ cm) of thickness.

Oil quench (bath temperature after quenching not to exceed 140°F (60°C)).

Temper at 340°F ±10°F (171° ±5.6°C) for 4 hours.

Hardness - Material shall meet the hardness requirements as follows:

Condition NT - Brinell Hardness 277-321 (R_c28-35)

HT - Brinell Hardness 535-578 (Rc54-57)

Decarburization - Parts designated as "ballistic critical" shall be free of decarburization (total and partial). For fully hardened material intended for final use in non-ballistic applications, the depth of partial decarburization (complete decarburization not permitted) after all heat treat operations shall not exceed 0.003 inch (0.008 cm) on any surface.

After any grinding operation in the hardened condition, stress relief-275° ±10°F (135° ±5.6°C) for two hours minimum.

HEAT TREATMENT OF STEELS NICKEL-BASE, AND COBALT-BASE ALLOYS

CODE IDENT NO.

02731

Centinela and Teale Streets Culver City, California 90230 PROCESS SPECIFICATION

Table X. Heat Treatment of Special Steels (Cont)

Process Control - Each batch of parts shall include three tensile bars for each heat of material in the batch. The tensile bars shall be transverse, full sized (R1) per HS 101, and shall be of the same heat as the parts they represent. In the event that size and/or configuration of available material will not permit making full sized transverse tensile bars, the largest obtainable sub-sized transverse tensile bars, per HS 101, may be used. The tensile bars shall accompany the parts they represent through all cleaning and heat treating processes. The tensile bars shall be tested at a Hughes Helicopters approved testing facility and mechanical properties thus obtained shall conform to the requirements of HMS 6-1121.

CODE IDENT NO.

02731

HEAT TREATMENT OF STEELS NICKEL-BASE, AND COBALT-BASE ALLOYS HP 1-1 K
SHEET 19 of 26

FORM 16428

APPENDIX D

Metcut report regarding surface grinding of ESR 4340 steel. An evaluation was made using low stress grinding techniques and also using maximum and minimum conditions of two Hughes Helicopters specifications. Studies of photomicrographs, hardnesses, and residual stress concentrations were conducted to determine the effects of the various conditions.

SURFACE GRINDING OF 4340 ESR STEEL

Metcut Report 1752-26887-2

for

Hughes Helicopter Division Summa Corporation Attn: Mr. Kenneth Niji Building 305 Culver City, CA 90230

Purchase Order HH112976-737

March 13, 1980

John B. Kohls, Supervisor

Machinability Department

Metcut Research Associates Inc. 3980 Rosslyn Drive Cincinnati, OH 45209

513/271-5100

At the request of Mr. Ken Niji of Hughes Helicopter, Metcut Research Associates performed various surface grinding test cuts on 4340 ESR steel. These test cuts were then compared using various metallographic techniques. The comparisons included 100X to 1000X visual examination, micro-hardness travers and residual stress profiles.

Metcut has performed extensive studies in the area of Surface Integrity.

Surface integrity is a study of the surface quality of the workpiece after machining. This work includes both surface and subsurface alterations. As a result of this work, Metcut has developed grinding procedures that will produce a low level compressive stress that is beneficial in fatigue applications.

One of the five (5) conditions evaluated in this program is the technique mentioned above and is identified as "LSG". The remaining four (4) conditions were taken from Hughes Process Specifications supplied by Mr. Niji. The specifications supplied were HP 18-12 and HP 15-51.

The five (5) conditions evaluated are listed in Table I. For each condition, the various grinding parameters are listed in the table.

After machining, metallographic sections were removed from the samples in such a manner as to minimize heat induced by cut-off.

Sections were taken both longitudinal and transverse to the grinding lays.

After metallographic mounting, the sections were ground back approximately 0.060 inches using a low speed wheel and silicon carbide paper which was flushed continuously with water.

Samples were prepared using metallographic techniques that assure optimum edge retention.

Examination of the samples was performed at magnifications from 100% to 1000% with micro-sections in the etched and unetched condition.

Photomicrographs and microhardness values were obtained on samples prepared in the direction transverse to the grinding lay axis.

Figures 1, 2, and 3, are typical photomicrographs of the five test conditions. All surfaces are relatively smooth. The only surface showing excessive subsurface alteration is HP 15-51 Max. in Figure 3.

The microhardness traverse profiles are shown in Figure 4. Each condition shows some surface softening as a result of the grinding conditions.

Condition HP 15-51 Max. again shows the most alteration from the core hardness values.

Sections were taken both longitudinal and transverse to the grinding lays.

After metallographic mounting, the sections were ground back approximately 0.060 inches using a low speed wheel and silicon carbide paper which was flushed continuously with water.

Samples were prepared using metallographic techniques that assure optimum edge retention.

Examination of the samples was performed at magnifications from 100X to 1000X with micro-sections in the etched and unetched condition.

Photomicrographs and microhardness values were obtained on samples prepared in the direction transverse to the grinding lay axis.

Figures 1, 2, and 3, are typical photomicrographs of the five test conditions. All surfaces are relatively smooth. The only surface showing excessive subsurface alteration is HP 15-51 Max. in Figure 3.

The microhardness traverse profiles are shown in Figure 4. Each condition shows some surface softening as a result of the grinding conditions.

Condition HP 15-51 Max. again shows the most alteration from the core hardness values.

Figure 5 is a graph of the residual stress profiles for each test surface. The only surface showing the detrimental tensile stresses is the HP 15-51 Max. A writeup on the residual stress technique and calculation is given immediately after Figure 5.

From this investigation, it seems that specifying the specification HP 18-12 can yield a fairly good level of surface quality. However specifying the specification HP 15-51 would not produce a similar effect. HP 15-51 depending on parameters selected, could yield either compressive or tensile stress. This wide variation in residual stress is not recommended for a high stressed critical part.

TABLE I

ļ

SURFACE GRINDING CONDITIONS 4340 ESR STEEL

	Ç.	HP 18-12	-12	HP 15-51	
ratalletet	150	111111	rid X .	111111.	Max.
Wheel Speed, fpm	2000	2000	3500	2000	0009
Wheel Grade	A46HV	A60I	A60.J	A46HV	A60J
Work Speed, fpm	40	40	80	30	09
Cross Feed, in./pass	020.	.050	.100	.100	.400
Fluid	Sulf 0il	Sulf 0il	Straight Oil	Polar Chip	Polar Chip
Depth of Grind, in.	.010	.010	.010	.010	.010
Down Feed	16 @ .0005	7000. 9 7	7 0007	6 € .001	6 @ .001
No. of Passes @ Depth/Pass	2 @ .0004	17 @ .0003	17 @ .0003	8 @ .0005	8 @ .0005
	6 @ .0002				
Dress Procedure					
No. of Passes @ Depth/Pass	5 @ .001	5 0 .001	5 @ .001	5 ° .001	5 @ .001
	2 Sparkouts	2 Sparkouts	5 2 0 .0005	2 Sparkouts	2 @ .0005
			5 @ .0002		5 @ .0002
			4 Sparkouts		4 Sparkouts
Diamond Traverse Rate	1 in./7 sec	. 1 in./7 se	1 in./7 sec. 1 in./7 sec. 1 in./21 sec. 1 in./7 sec.	:. 1 in./7 sec.	1 in./21 sec.

Mount No. 24257

1000X

Mount No. 24257

1000X

Generally Smooth Surface With Isolated Light Etching Scallops. No Evidence of Laps or Cracks.

PHOTOMICROGRAPHS OF 4340SR STELL SURFACE GROUND BY METCUT "LOW STRESS" GRIND TECHNIQUES

Mount No. 24179 1000X HP 18-12 Min.

Generally Smooth Surface with Very Thin Light Etching Surface Layer (less than 0.0001 ins.). Isolated Instances of Surface Laps.

Mount No. 24175 1000X HP 18-12 Max.

Generally Smooth Surface With Layer More Frequent Light Etching Scallops
Than Low Stress Believed to be Untempered Martensite. Some
Instances of Laps and Micro-cracks

PHOTOMICROGRAPHS OF 4340 ESR STEEL SURFACE GROUND BY TECHNIQUES PERMITTED IN HP 18-12

Mount No. 24183 1000X MP 15-51 Min.

Generally Smooth Surface with Isolated Instances of Scallops (VIM , Iracks and Laps

Mount No. 24181 1000X HP 15-51 Max.

Larger and More Frequent Instances of Untempered Martensite, Laps and Cracks

PHOTOMICROGRAPHS OF 4340 ESR STELL SURFACE GROUND BY TECHNIQUES PLANTITIED IN HE 15-51

MICROHARDNESS TRAVERSE PROFILES OF SURFACE GROUND 4340 ESR STEEL

Figure 5

LABORATC RY REPORT

METCUT RESEARCH ASSOCIATES INC.

3980 Rosslyn Drive, Cincinnati, Ohio 45209 / Teletype: 810-461-2840 / Telephone: (513: 071-5100)

Number: 1752-26887-2

Residual stress measurements were made using the technique recommended by the Society of Automotive Engineers. The specific technique employed differed from the more common SAE technique in two respects. First, the diffraction peak used for stress measurement was located using a five-point parabolic regression procedure rather than the three-point algebraic procedure more commonly used. Second, the intensities measured at each of the five points were corrected for the background intensity. These modifications improve the repeatability of stress measurements. Except for these modifications, the technique is identical to that described in the Society of Automotive Engineers Publication "Residual Stress Measurement by X-Ray Diffraction," SAW J784a. Details of the technique and diffractometer fixturing are outlined below:

Diffraction Peak: (211)

Radiation: $CrK\alpha$

Incident Beam Divergence: 3°

Detection Slit: 0.7° E/(1 + v): 24.5 x 10^{6} psi

The value of the elastic property $E/(1+\nu)$ in the direction normal to the (211) crystallographic planes was taken to be the same as previously determined for hardened 4340 steel, 50 Rc. The determination of crystal elastic constants for the steel used to manufacture the ESR4340 Steel in question was not included in the scope of this program.

LABORATC RY REPORT

METCUT RESEARCH ASSOCIATES INC.

3990 Rosslyn Drive, Cincinnati, Ohio 45209 / Teletype: 810-461-2840 / Telephone: (513: 271-5100)

Number: 1752-26887-2

Residual stress measurements were made using the technique recommended by the Society of Automotive Engineers. The specific technique employed differed from the more common SAE technique in two respects. First, the diffraction peak used for stress measurement was located using a five-point parabolic regression procedure rather than the three-point algebraic procedure more commonly used. Second, the intensities measured at each of the five points were corrected for the background intensity. These modifications improve the repeatability of stress measurements. Except for these modifications, the technique is identical to that described in the Society of Automotive Engineers Publication "Residual Stress Measurement by X-Ray Diffraction," SAW J784a. Details of the technique and diffractometer fixturing are outlined below:

Diffraction Peak: (211) Radiation: $CrK\alpha$

Incident Beam Divergence: 3°

Detection Slit: 0.7° E/(1 + v): 24.5 x 10^{6} psi

The value of the elastic property $E/(1+\nu)$ in the direction normal to the (211) crystallographic planes was taken to be the same as previously determined for hardened 4340 steel, 50 R_C. The determination of crystal elastic constants for the steel used to manufacture the ESR4340 Steel in question was not included in the scope of this program.

Results

Surface residual stresses measured in each test surface were as follows:

_	Specimen	Depth Below Surface (in.)	Residual Stress *
	LSG	0.0000	-88.3
		0.0005	-79.8
		0.0010	-20.1
		0.0012	43.7
		0.0020	28.9
	HP 18-12 MIN.	0.0000	-58.1
		0.0004	-64.2
		0.0010	-21.4
		0.0012	-14.5
		0.0020	31.7
	HP 18-12 MAX.	0.0000	0.9
		0.0005	-50.7
		0.0010	27.8
		0.0012	29.3
		0.0020	8.5
	HP 15-51 MIN.	0.0000	-61.5
		0.0004	-41.5
		0.0010	-33.0
		0.0013	4.5
		0.0020	-18.5
	HP 15-51 MAX.	0.0000	127.8
		0.0005	138.0
		0.0009	136.4
		0.0012	114.5
		0.0020	133.0

^{*} Negative value denotes compressive stress.

Details of the data analysis are shown in the attached computer printouts. The error shown for the stress values are \pm one standard deviation resulting from random error in the calibration constant and uncertainty in the diffraction peak position. An additional systematic error of \pm 3 ksi arises from instrument misalignment and sample positioning errors.

METCUT RESEARCH ASSOCIATES INC. LINCINNATI, OHIC

	RESIDU	AL STRESS DEPTH	CORRECTION ANALYS	315
	1752-26887	1-LSG	LONG., a 2.0 MILS.	GRN DIF.
E	/(1+V)= 2	24500. +- 441.	(KSI) MU= 2196	5. (1/IN)
DATA POINT		********* MEASURED		KSI ********* RELAX CORRECTED
1	0.0000	-88.3 +- 2.4	-82.8	-12.8
2	0.0005	-79.8 +- 2.6	-75.4	-03.2
3	<u>.</u> .0010	-20.1 += 1.7	-68.5	-08.1
4	0.0012	43.7 +- 1.6	-2.6	-2.7
	0.0020	28.9 += 1.6	, ∞ 0. û	80.1
		•		
		· · · · · · · · · · · · · · · · · · ·		
		• • • •		

METCUT RESEARCH ASSOCIATES INC.

CINCINNATI OHIO X-RAY DIFFRACTION RESIDUAL STRESS ANALYSIS .. 1752-26887 1-LSG ... LONG , 3 2" U MILS., GRN DIR. RESIDUAL STRESS (KSI) DEPTH -160.0 -50.0 0.0 50.0 100.0 150.0 200.0 (IN.) I ----+---I ----+----I ----+----I ----+----I ----+----I ----+----I __0.0500 1 0.0001 I . _ I 0.0002 __ 0.0064] * 0.0065 I 🕏 . I 0.0006 0.0007 1 0.0009 I 0.0010 1 6.0011 I ____0.0012 1 0.0614 1 __ 0.0015 0.6616 0.0019 I 5.0020 Ι 0.6621 0.0022 0.0024 __ 0.0625 U.6626 _ 6.6027 0.0029 0.0030 0.0031 **U.**0U32 0.0034 0.0035 1 0.0036 I 0.0037 0.0039 0.0040 L.UL41 C.0042 1 0.0044 1 0.0045 Ι 0.0046 I 0.0047 I 0.0049

MEASURED DATA = 0

__ 0.0050

FITTED POINTS = *

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .OHIO

FIVE	POINT	PARABOLIC	DIFFSACTION	PEAK	221912	AMALYSTS
, 1 A F			DITILIVACIADIA	LENK	314533	WMWI ISTS

 1752-26887 1-LSG			LONG, SURFACE, GRN DIR.			
 PSI	2 THETA	TIME	CUR. TIME	6 (A)	VERTEX +- ST. TEV.	
 u.000	154.000	33.040	308.448			
 	154.5uc	32.220	275.249			
 	155.000	31.740	25º.7L9			
	155.700					
	156.200	33.030	313.329	1.17310		
					155.0736 +-0.0052	
45.000	155.000	20.510	335.693			
	155.540	. 19.850	263.829			
	156.20J	19.480	244.958			
 	156.606	19.600 _	272.733			
	157.000	19.830	325.481	1.17099		
 					156.0277 +-(. 931	
 E/(1+V) =	2450U. +	- 441. (K	SI)	STRESS =	-88.3 +- 2.4 (+51)	
DELTA L =	-J.88211 (A	1		STPAIN =	-0.001802 (IN./IN.	

FIVE POINT PARABOLIC DIFFRACTION PLAK STRESS ANALYSIS

 17	52-26887 1-LS	G	LONG., a (MILS., GRN DTR.			
 PSI	2 THETA	TIME	COR. TIME	D (A)	VERTEX +- ST.PEV.	
 0.000	154.000 154.500	33.630 32.690	339.222 295.517			
 	155.000 155.560 156.000	32.110 32.220 32.800	273.214 278.452 303.769	1.17285		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				155.1859 ++0.1053	
 45.000	155.000 155.500	23.700	137.001 126.990			
 	156.200 156.600 157.000	22.600 22.820 23.010	121.162 127.663 134.060	1.17094		
	, , , , , , , , , , , , , , , , , , , ,		13 11000	•	156.0506 +-0.0075	
 E/(1+V) =	24500. +-	441. ((SI)	STRESS =	-75.8 +- 2.6 (kSI)	
 DELTA D =	+0.00191 (A)			STPAIN =	-0.001629 (IN./IN.)	

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .OHIO

	FIVE POINT	PARABOLIC D	IFFRACTION I	PEAK STRES	S ANALYSIS
	1752-24887 1-LSG-1			RFACE,REPO	SITIONED, GRN DIR
PS1	2 THETA	TIME	COR. TIME	(A) Q	VERTEY +- ST.DEV.
C.Q6	154.000 154.500 155.000 155.500 156.000	33.490 32.470 31.960 32.220 32.770	323.715 260.234 262.298 272.697 295.659	4.47264	
	130.000	32.110	243.034	1.17296	155.1382 +-0.0052
45.00	455 (00	23.220 22.290 21.780 21.930	171.071 158.636		
- Care Colonia de Care	157.000	22.180	183.566	1.17076	156.1342 +-0.0043
			•		
E/(1+V)_= 2450°.	. +- 441. ()	(51)	STRESS =	-91.9 +- 2.5 (KSI)
DELTA	0 = -0.00220	(A)		STRAIN =	-0.001875 (IN./IN.)
the appropriate and the first section of the sectio					
-					
			•		
		·			
-					

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .GHIO

17	752-26887 1 - LS	G	LONG., a 1.0 MILS., GRN DIR.			
PSI	2 THETA	TIME	COR. TIME	D (A)	VERTEX +- ST.DE	
0.000	154.500	34.190	335.737			
The state of the s	155.000	33.410	300.845			
	155.500		288.388			
	156.000		302.240	4 4 7000		
	156.500	33.810	372.295	1.17200	155.5655 +-0.00	
·					177.76.75 4-0.110	
45.000	155.000	23.680	190.233			
	485 500	23.310	180.911			
	150.000		178.342			
			189.370			
	157.000			1.17152	155 7077 4=6 6.0	
	THE RESERVE OF THE STATE OF THE	•	-		155.7837 +-(.00	
E/(1+y) =	= _ 2450ō. + -	441. (K	S1)	STRESS =	-20.1 +- 1.7 (rs	
DELTA 0 =	= -0.00049 (A)			STRAIN =	-0.000410 CIN./I	
	FIVE POINT PAR		FFRACTION	···· PFAK STRESS	S ANALYSIS	
	FIVE POINT PAR					
17	752-26887 1 - LS	G	LONG.,	1.2 MlLS.,	GPN DIR.	
	752-26887 1 - LS	G	LONG.,	1.2 MlLS.,		
17	752-26887 1 - LS	G TIME	LONG.,	1.2 MlLS.,	GPN DIR.	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500	TIME 42.670 42.400	LONG., &	1.2 MlLS.,	GPN DIR.	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500 156.000	TIME 42.670 42.400 42.170	LONG., & COR. TIME 656.428 807.631 77(.548	1.2 MlLS.,	GPN DIR.	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500 156.000 156.500	TIME 42.670 42.400 42.170 42.470	LONG., & COR. TIME & 56.428 & U7.631 & 77(.548 & 831.251	1.2 MILS., D (A)	GPN DIR.	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500 156.000	TIME 42.670 42.400 42.170 42.470	LONG., & COR. TIME 656.428 807.631 77(.548	1.2 MlLS.,	GPN DIR. VERTEX +- ST.BE	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500 156.000 156.500	TIME 42.670 42.400 42.170 42.470 42.770	LONG., & COR. TIME & 56.428 & U7.631 & 77(.548 & 831.251	1.2 MILS., D (A)	GPN DIR. VERTEX +- ST.PE	
PSI 0.000	752-26887 1-LS 2 THETA 155.000 155.500 156.000 156.500 157.000	TIME 42.670 42.400 42.170 42.470 42.770	LONG., & COR. TIME & 56.428 & 07.631 & 770.548 & 831.251 & 901.068	1.2 MILS., D (A) 1.17131	GPN DIR. VERTEX +- ST.PE	
PSI PSI	752-26887 1-LS 2 THETA 155.000 155.500 156.000 156.500	TIME 42.670 42.400 42.170 42.470 42.770	LONG., & COR. TIME & 56.428 & 07.631 & 770.548 & 831.251 & 901.068	1.2 MILS., D (A) 1.17131	GPN DIR. VERTEX +- ST.PE	
PSI 0.000	752-26887 1-LS 2 THETA 155.000 156.000 156.500 157.000 157.000 155.500 155.500	TIME 42.670 42.400 42.170 42.470 42.770	LONG., & COR. TIME & 56.428 & 07.631 & 770.548 & 831.251 & 901.068	1.2 MILS., D (A) 1.17131	GPN DIR. VERTEX +- ST.PE	
PSI 0.000	752-26887 1-LS 2 THETA 155.000 156.000 156.500 157.000 157.000 155.500 155.500 156.000	TIME 42.670 42.400 42.170 42.470 42.770 29.186 29.020 28.470 28.630	LONG., & COR. TIME & 56.428 & 807.631 & 770.548 & 831.251 & 901.068 & 545.353 & 546.182 & 466.190 & 531.248	1.2 MILS., D (A) 1.17131	GPN DIR. VERTEX +- ST.PE	
PSI 0.000	752-26887 1-LS 2 THETA 155.000 156.000 156.500 157.000 157.000 155.500 155.500	TIME 42.670 42.400 42.170 42.470 42.770	LONG., & COR. TIME & 56.428 & 807.631 & 770.548 & 831.251 & 901.068 & 545.353 & 546.182 & 466.190 & 531.248	1.2 MILS., D (A) 1.17131	GPN DIR. VERTEX +- ST.PE	
PSI 0.000	752-26887 1-LS 2 THETA 155.000 156.000 156.500 157.000 157.000 155.500 155.500 156.000	TIME 42.670 42.400 42.170 42.470 42.770 29.186 29.020 28.470 28.630	LONG., & COR. TIME & 56.428 & 807.631 & 770.548 & 831.251 & 901.068 & 545.353 & 546.182 & 466.190 & 531.248	1.2 MILS., D (A) 1.17131	GPN DIR.	
PSI 0.000 45.000	752-26887 1-LS 2 THETA 155.000 156.000 156.500 157.000 157.000 155.500 155.500 156.000	G 11ME 42.670 42.400 42.170 42.470 42.770 29.186 29.020 28.470 28.630 28.740	LONG., a COR. TIME 256.428 807.631 77(.548 831.251 901.068 545.353 546.182 466.190 531.248 620.532	1.2 MILS., D (A) 1.17131	.GPN DIR ST.PE VERTEX +- ST.PE 155.8821 +-0.00	

METCUT RESPARCH ASSOCIATES INC. CINCINNATI, .OHIO

FIVE POINT PARABOLIC DIFFRACTION PEAK STRESS ANALYSIS

	1752-26887 1-LSG			LONG., a 2.8 MILS., GRI DIR.		
	P\$I	2 THETA	TIME	COR. TIME	(A) ŋ	VERTEX +- ST.DEV.
		155.000 155.500 156.000	43.750 43.370	1631.169 936.834 896.035		
		156.500 157.000		480.265	1.17123	155.9167 +-0.1954
	45.000	155.000 155.500	30.470 30.300	333.588 332.759		
		156.200 156.600 157.660	30.020 30.370 30.660	328.188 370.049 415.211	1.17192	
**************************************			33.000		1.111/2	155.6022 +-0064
	E/(1+V) =	24500. +-	441. ()	(\$1)	STRFSS =	28.9 +- 1.6 (FSI)
	DELTA D =	0.30067 (A)			STHAIL =	0.000590 (IN./TN.)

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .GHIO

	RESII	DUAL STRESS DEPT	H CORRECT	ION ANAL	YSIS
-	1752-268*	7 3-18-12-MIN	LOMG., â	2.0 MIL	S.,GRH DIR.
Ε	(/(1+V)=	24500. +- 441	. (KSI)	MU= 21	96. (1/IN)
		******* MFASURED		L STRESS Orrected	(KSI ************************************
1	0.0000	58.1 <u>+</u> .2.5	4	1.8	-41.
	0.0004	-64.2 +- 1.0	-6	6.2	-66.1
	0.0010	-21.4 <u>+- 1.5</u>	- 3	1.5	-31.
4	0.0012	14.5 +=_1.5	-2	3.4	-23.
5	<u>_U</u> .nu20_	31.7.±- 1.6		7.0	17.7
	·-···				
	÷				
	·	·			
resident international internation and		-			
***************************************		. ,			
		·			
and the second second of the control					
	-				
	•				

.....

	*	-		ME	TCUT RESEAR CINCIN	CH ASSO NATI OH		INC.		
		_		KHRAY DI	IFFRACTION I	RESIDUA	L STRES	S ANALY:	15	
		-	. 1.75	52-26687	7 3-18-12-M	IN	LONG.,A	2.0 MI	.S.,GRN DIR	
	DEFTH	-80	• G	-00.0	RESIDUAL -40.0	STRESS -20		C • (20.0	40.
	(IN.)		1			+	1	1	.+	A 7
	0.0000		ì	•	9		1	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,
	0.5601		I		*					
			J	_ "						
	0.0004		I	0 *						
	, 0.6 605		1	*						
	6 000 . 0		I		*					
	0.0007		I.		*					
	0.0009		I		*					
	0.0610		1			•				
	0.0011		I			*				
	0.0012]			0∗				
	0.0014		Ţ				* .			
	0.0015		I							
	0.0016 0.0017_		I I					* *		
*	0.0017		I	* *				*		
	0.0020		I					•	9 9	
	0.0020		ı I						•	
	0.0022		I							
	0.0022	~ :	1 T	•	-					
			1							
	0.0025		1 I		* - 1 = 1 + - - 1 + - 1					
	0.0027		I							
	0.6629		Ī							
	0.0030		I							
	0.0031		Ī						4	
	0.0032		I							
	0.0034		- I							
	6.0035		I							
	0.0636		I							
	0.0537		1							
	0.0039	•	ĭ		•					
	0.0046		I							
	6.6641		i							
	0.0042		I							
	11.0044	•	I							
	0.0045		I							
	0.0046		I							
	_0.0047		I							
	0.0049		I -							
	0.0050		I				_	•		
-17 4				D POINT	TS = * /	MFASURE			.+}	+1
		-								

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

 1752-26887 3-18-			LONG.SU	URFACE, GRN DIH.		
 P\$I	2 THETA	TIME	COR. TIME	0 (A)	VERTEX +- ST.DEV.	
 0.000	154.560	33.250	313.035			
	154.700	33.800	346.875			
 	155. 000	32.590	285.555			
		32.930	300.778	•		
 	150.000	33.260	316.833	1.17253		
					155.5268 +-1. 66	
 45.000	155.000	23.070	109.128			
 			101.418			
			100.061			
 	15€.,700	22.360	105.777			
 			110.227	1.17114		
 					155.9571 +-(. 89)	
E/(1+V)	= 24500. +-	441. (K	(\$1)	STRESS =	-58.1 +- 2.5 (+51)	
DELTA D	= -0.06139 (A)			STRAIN =	-0.001186 (IN. IN.	

FIVE POINT PARAGOLIC DIFFRACTION PEAK STRESS ANALYSIS

-	1752-26867 3-18-12-MIN			LONG., a F.4 MILS, GRN DIF			
	PSI	2 THETA	TIME	COR. TIME	(A)	VERTEX +- ST.DEV.	
	0.000	154.000	41.010	751.168			
		154.500	40.470	669.028			
		155.000	39.860	593.391			
		155.5 00	40.170	634.341			
		156.000	40.800	746.036	1.17320		
	-					155.0312 +-0.0038	
	45.000	155.000	27.620	1408.052			
		155.500	27.170	1055.646			
		156. 000	26.940	1010.428			
		156.506	27.000	1361.208			
		157.000	27.340	3314.546	1.17166		
						155.7197 +-0.0014	
	`• _• ; =	2450: . +-	441. (KS1)	STRESS =	-64.2 +- 1.6 (KSI)	
	4	*(154 (A)			STRAIL =	-0.001310 (It./IN.)	

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .OHIO

1	752-26887 3-1	18-12-MIN	LONG.,a	1.0 MILS.	GRK DIR.
PSI	2 THETA	TIME	COF. TIME	(A) G	VERTEX +- ST.DEV
t: . 000		33.920			
	155.000	33.350	300.406		
	155.500 156.000	33.010	287.447		
	156.000	33.340	302.015	4 43546	
	120.000	34.030	333.422	1.17219	
					155.4819 +-1.966
45.000	155.000	23.330	170.294		
45.000	155.500	22.890	160.539		
	155.900	22.710	158.686		
	156.500	22.920	172.404		
	157.000	23.450	201.488	1.17168	
					155.7137 +-1.105
= 1/4 · · · ·	7/500		(- 1)	•	
E/(1+V),;=	24500.1	- 441. (K	.81)	21K122 =	-21.4 +- 1.5 (rs)
DELTA D =	= -0.00051 (A	4)		STPAIN =	-0.000437 (IN./IN
		**			
	FIVE POINT PA	ARABOLIC DI	FFRACTION I	 PEAK STRES:	S ANALYSIS
	FIVE FOINT PA	· · ·			
		18-12-MIN	LONG., à	1.2 MILS.	GRA DIR.
17 PSI	752-26887 3-1 2 THETA 154.500	18-12-MIN TIME 34.170	LONG., a COR. TIME 339.171	1.2 MILS.	GRA DIR.
PSI 0.000	752-26887 3-1 2 THETA 154.500	18-12-MIN TIME 34.170	LONG., a COR. TIME 339.171	1.2 MILS.	GRA DIR.
17 PSI	752-26887 3-1 2 THETA 154.500 155.000	18-12-MIN TIME 34.170 33.810	LONG., a COR. TIME 339.171	1.2 MILS.	GRA DIR.
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000	18-12-MIN TIME 34.170 33.810	LONG., a COR. TIME 339.171 322.506 305.110	1.2 MILS.	GRA DIR.
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800	18-12-MIN TIME 34.170 33.810 33.390	LONG., a COR. TIME 339.171 322.506 305.110	1.2 MILS.	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300	TIME 34.170 33.810 33.390 33.770	LONG., a COR. TIME 339.171 322.506 305.110 323.532	1.2 MILS.,	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.400	TIME 34.170 33.810 33.390 33.770 34.330	LONG., a COR. TIME 339.171 322.506 305.110 323.532 353.482	1.2 MILS.,	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.400	TIME 34.170 33.810 33.390 33.770 34.330	LONG., a COR. TIME 339.171 322.506 305.110 523.532 353.482	1.2 MILS.,	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.400	TIME 34.170 53.810 53.810 33.390 33.770 34.330	LONG., a COR. TIME 339.171 322.506 305.110 523.532 353.482	1.2 MILS.,	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.800 156.800 155.500 156.000	TIME 34.170 33.810 33.390 33.770 34.330 23.750 23.340 23.100	LONG., a COR. TIME 339.171 322.506 305.110 523.532 353.482 196.653 185.596 182.171	1.2 MILS.,	GRM DIR. VERTEX +- ST.:FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.800 156.800 156.000 156.000	TIME 34.170 53.810 53.810 33.390 33.770 34.330 23.750 23.340 23.100 23.340	LONG., a COR. TIME 339.171 322.506 305.110 323.532 353.482 196.653 185.596 182.171 199.920	1.2 MILS. U (A) 1.17169	GRM DIR. VERTEX +- ST.: FV
PSI 0.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.800 156.800 155.500 156.000	TIME 34.170 33.810 33.390 33.770 34.330 23.750 23.340 23.100	LONG., a COR. TIME 339.171 322.506 305.110 523.532 353.482 196.653 185.596 182.171	1.2 MILS.,	,GRM DIR. VERTEX +- ST.:FV 155.570≿ +-2.(€7
PSI 0.000 45.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.800 156.800 156.000 156.000 156.500 156.500	TIME 34.170 53.810 33.390 33.770 34.330 23.750 23.340 23.100 23.340 23.710	LONG., a COR. TIME 339.171 322.506 305.110 323.532 353.482 196.653 185.598 182.171 199.920 228.623	1.2 MILS. U (A) 1.17169	
PSI 0.000 45.000	752-26887 3-1 2 THETA 154.500 155.000 155.800 156.300 156.800 156.800 156.000 156.000	TIME 34.170 53.810 33.390 33.770 34.330 23.750 23.340 23.100 23.340 23.710	LONG., a COR. TIME 339.171 322.506 305.110 323.532 353.482 196.653 185.598 182.171 199.920 228.623	1.2 MILS. U (A) 1.17169	,GRM DIR. VERTEX +- ST.:FV 155.57G≿ +-2.(€7

METCUT RESEARCH ASSOCIATES 15.C. CINCINNATI, .0H10

	FIVE PCINT PAR	ABOLIC D.	IFFRACTION	LENK SINESS	WALTSIS
	1752-26887 3-18	-12-MIN	LONG., w	2.0 MILS.,	GRN DIR.
PSI	2 THETA	TIME	COR. TIME	n (A)	VERTEX +- ST.PEV.
0.000	155.500 156.000	43.730 43.570 44.100	924.298 818.613 794.200 903.470 1011.533	1.17116	
45.000	416 700		584.684 570.317	-	155.9479 +-(.:051
	156.300 156.800 157.300	29.470 29.610 29.680	ასგ.557	1.17192	
					155.6026 +-6.0059
E/(1+V)	= 24500. +-	441. CF	(51)	STRESS =	31.7 +- 1.6 (KSI)
DELTA C	= 0.00076 (A)			STRAIN =	0.000647 (15.71h.)
	-				
And the second s					
a					
		•			
· upo districtor	-				
-				•	

METCUT RESEARCH ASSOCIATES INC. ______CINCINNATI, .OHIO

	- V			
	PESID	UAL STRESS DEPTH	CORRECTION ANALY	1515
	1752-26847	2-18-12-MAX	LONG., W 2.0 MILS	S.,GRN DIR.
	£/(1+v)=	24500. +- 441.	(KSI) MU= 219	Pe. (1/IN)
		********* MEASUR <u>L</u> D	RESIDUAL STRESS GRAD. CORRECTED	(KSI ************************************
1	_0.0000	0.9 +- 0.5	52.6	52.7
2	0.0005	-50.7 +- 1.1	-58.4	- 58.e
3	<u>5.0010</u>	27.8 +- 1.6	17.5	17.0
4	0.00.12	29.3 +- 1.8	30.5	30.5
5	0.0020	8.5 +- 0.3	. 17.8	17.7
	· · · · · · · · · · · · · · · · · · ·			

 ,				
The second secon				
	-			
-				

	~	-PLY NIE	FRACTION	NATI OF		C ANALY	v c 1 c	
		<u> </u>	2-10-12-M	АХ	LONG.	2.0 M	ILS.,GRN D	IP.
DEPTH -7	5.C	-50.0		۲.	· Ü			75
_ 00000	I+	I	+I	+	1+-	1	+I	+
_0.0000 _0.0001	<u>I</u>						•	
0.0002	I			4		•		
0.0004	<u>-</u> <u>-</u> .	-	*					
0.0005	ī	•						
0.0006	Ī	·	*					
0.0007	I		*					
0.0009	1		• • •					
_0.0010	I				* ()			
0.0011	I					*		
_ U.UU12	I					•	· ·	
0.0614	I					*		
_0.0015	_I					*		
0.0616	I					*		
_0.0L17				•		*		
0.0019	1					*		
. C.0020	I				9			
0.0021	1							
0.0622	I							
0.0024	I							
_0.0025	·!							
0.0026	1							
0.0027	I	•						
0.0029	l T							
0.0030	I							
<u>0.0037</u>	ī							
0.0034	7							
	ì							
0.0035 0.0036	Ĭ		•					
0.0037	Ī							
0.0039	Ī							
0.0040	ī							
0.0041	Ī		• • • •	•				
0.0042	i							
C.UL44	1							
0.0045	I							
0.0046	1		-					
0.0647	1							
0.0049	I							
0.0050	1							
	1+	J	-+1	+	1+-	j	-+1	+
	FITTE	POINTS	= * /	YE / SURE	DEATA	= 0		
***************************************	•		=	•				
			·					

ļ

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, .OFIC

	752-20687 2-1	8-12-6AX,	LONG, SU	RFACE, GRN	DIR.
P\$I	2 THETA	TIME	COR. TIME	D (A)	VERTEX +- ST. DEV
0.000	154.500	32.570	291.325		
	154.500 155.000	31.820	263.193		
	155.500				
	156.000				
	156.400	32.480	291.317	1.17222	455 //35 . 5 :05
					155.4675 ++1.405
45.00U	154.500	23.340	30€.998		
	155.000	22.620	252.316		
	155.500	22.210	233.076		
	156.000	22.310_	254.074_	,	
	156.400	22.700	307.378	1.17224	
					155.4576 +-5.463
E/ <u>(1+y</u>) :	= 24500. +	- 441(KSI)	STRESS =	0.9 +- 0.8 (KSI
DLLTA_D :	= 0.00002 (A)		STRAIN =	U.000014 (Ih./Ih
	FIVE FOINT PA				
17	752-26867 2-1	8-12-MAX	LONO., á	t.5 MILS.	GPN DIR.
17	752-26867 2-1	8-12-MAX	LONO., á	t.5 MILS.	
PSI	752-26867 2-1 2 THETA	8-12-MAX TIME	LONG., &	t.5 MILS.	GPN DIR.
PSI 6.000	752-26867 2-1 2 THETA 154.500	8-12-MAX TIME	LONG., & COR. TIME 259.900	t.5 MILS.	GPN DIR.
PSI 6.000	752-26867 2-1 2 THETA 154.500 155.600	8-12-MAX TIME 33.610 32.500	LONG., & COR. TIME 259.900 259.407	t.5 MILS.	GPN DIR.
PSI 0.000	752-26867 2-1 2 THETA 154-500 155-600 155-600	8-12-MAX TIME 33.610 32.500	LONG., 6 COR. TIME 299.900 259.407 238.132 242.704	(.5 MILS.,	GPN DIR.
PSI 0.000	752-26867 2-1 2 THETA 154-500 155-600 155-600	8-12-MAX TIME 33.610 32.500	LONG., & COR. TIME 259.900 259.407	t.5 MILS.	GPN DIR.
PSI 5.000	752-26867 2-1 2 THETA 154.500 155.600 155.600 156.500	8-12-MAX TIME 33.610 32.500 31.790 31.910	LONG., 6 COR. TIME 299.900 259.407 238.132 242.704	(.5 MILS.,	GPN DIR. VERTEX +- ST.PFV
PSI G.QUA	752-26867 2-1 2 THETA 154.500 155.600 156.600 156.600	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030	LONG., & COR. TIME 299.900 259.407 238.132 242.704 0.058	(.5 MILS.,	GPN DIR. VERTEX +- ST.NEV
PSI 0.000	752-26867 2-1 2 THETA 154.500 155.600 156.600 156.600	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030	LONG., & COR. TIME 299.900 259.407 238.132 242.704 0.058	(.5 MILS.,	GPN DIR. VERTEX +- ST.NEV
PSI G.000	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600 156.600	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030	LONG., & COR. TIME 299.900 259.407 238.132 242.704 0.058	(.5 MILS.,	GPN DIR. VERTEX +- ST.NEV
PSI 0.000	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600 156.600	8-12-MAX TIME 33.610 22.500 31.790 31.910 0.030 23.430 22.590 22.140	LONG., & COR. TIME 299.900 259.407 238.132 242.704 0.058	(.5 MILS.,	GPN DIR.
PSI G.QUA	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030 23.430 22.590 22.140 22.520	LONG., a COR. TIME 299.900 259.407 238.132 242.704 0.058 265.417 216.042 202.891 242.511	(.5 MILS. (A)	GPN DIR. VERTEX +- ST.NEV
PSI G.000	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600 156.600	8-12-MAX TIME 33.610 22.500 31.790 31.910 0.030 23.430 22.590 22.140	LONG., & COR. TIME 299.900 259.407 238.132 242.704 0.058	(.5 MILS.,	GPN DIR. VERTEX +- ST.NEV
PSI 6.000	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600 154.500 155.000 155.700 156.400 156.700	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030 23.430 22.590 22.140 22.520 23.010	LONG., a COR. TIME 299.900 259.407 238.132 242.7(4 0.058 265.417 216.042 202.891 242.511 296.162	1.17212	GPN DIR. VERTEX +- ST.NEV 154.9737 +0014
PSI 0.000	752-26867 2-1 2 THETA 154.500 155.600 156.300 156.600	8-12-MAX TIME 33.610 32.500 31.790 31.910 0.030 23.430 22.590 22.140 22.520 23.010	LONG., a COR. TIME 299.900 259.407 238.132 242.7(4 0.058 265.417 216.042 202.891 242.511 296.162	1.17212	,GRN DJR. VERTEX +- ST.NEV 154.9737 +001

METCUT RESEARCH ASSOCIATES INC. CINCINNTI, .OPIO

	CINCI	NNATI, OPI	0	
FIVE POI	NT PARABOLIC DI	FFRACTION P	EAK STRESS	PNALYSIS
1752-2686	7 2-18-12-MAX-1	LONG, SUR	FACE, REPOS	ITIONED, GRN DIR
PS1 2 THE	TA TIME	COR. TIME	b (A)	VERTEX +- ST. PEV.
155.5 156.0	00 32.420 00 32.150 00 32.630	264.624	1.17235	155.4099 +-(.7057
45.000 154.5 155.0 155.7 156.1 156.5	00 23.550 C1 22.730_ 00 22.420 00 22.500_ 00 22.950	204.871 204.875	1.17219	
		• • • •		155.47%1 +-1.6039
E/(1+y) = 245	00. +- 441. (K	SI)	STRESS =	-6.4 +- 1.0 (rSI)
DELTA_D =0.000	15 (A)		STRAIN =	-0.000131 (IN./IN.)
		-•		
A STATE OF THE STA				
And the second s				
	-			

and determined to the second of the second o				

METCUT PESCARCH ASSOCIATES INC. CINCINNATI, .OHIO

	FIVE POINT PAR	ABOLIC D	IFFFACTION H	EAK STRESS	ANALYSIS
	1752-26887 2-16	-12-hAX	LONG., a	1.0 MILS.,	GRN DIR.
FSI	2. THETA	TIME	COP. TIME	ŗ (A)	VERTEX +- ST.PEV.
u.onu	155.500 155.500 156.900 156.500 157.000	32.990		1.1710¢	155.9978 +-0.0084
45.000	455 500	22.820 23.020	300.795 271.156 272.721 312.024 400.073	1.17172	155.6752 +-0. 036
F/(1+V)	= 24500 +-	441. ((KSI)	STRESS =	27.8 +- 1.6 ((\$1)
DELTA D	= (.001.66 (A)			STRAIN =	01000567 (181/INL)
	FIVE POINT PAR				
PSI					VERTEX +- ST.DEV.
0.000		42.570 42.220 41.940 42.350 42.880		1.17114	155.9580 +-0. (55
45.000	155.500 155.500 156.000 156.500	29.000 28.660 28.440 28.740			
· · · · · · · · · · · · · · · · · · ·	157,360	29.100	242.966	1.17184	155.6388 +-(.3082
E/(1+V)	= 24500. +-	441.	(KSI)	STRESS =	۷۶.3 +- ۱.۵ (۱SI)
DELTA) = 0.0070 (A)			STRAIN =	U.900597 (IN./IN.)

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

FIVE POINT PARABOLIC DIFFRACT	ION PEAK STRESS ANALYSIS
1752-266×7 2+18-12-MAX LONG	G., a 2.0 MILS., GRN DIR.
PSI Z THETA TIME COR. T	TIME O (A) VERTEX +- ST.DEV.
0.000	658 460 765
45.000 155.000 33.370 -2422.2 155.500 33.070 -2777.0 156.000 32.880 -2865.2 156.700 32.920 -1859.0 157.000 33.030 -1483.1	042 226 002 159 1.17176
E/(1+V) = 2450U. +- 441. (KSI)	STRESS = 8.5 +- 0.4 (x51)
DELTA D = 0.00020 (A)	STRAIN = 0.0001/3 (11./11.
· · · · · · · · · · · · · · · · · · ·	
	•
	•

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

	RESID	UAL STRESS DEPTH	CORRECT	ION ANALY	(\$18	
	1752-26887	5-15-51-MIN	LONG., a	2.U MILS	S.,GRN DIR.	•
	f./(1+V)=	24500. +- 441.	(KSI)	MU= 219	76. (1/IN)	
		******** MEASURED		STRESS DRRECTED		
1	0.0000	-61.5 <u>+-</u> 1.8	72	? . (i		-72.0
	0.0004	-41.5 +- 1.5	- 48	3.1	-	-48.0
3	0.0010	-33.0 +- 1.4	<u>-</u> 51	1.2	-	-51.0
		4.5 +- 1.0	11	1.3	-	-11.0
<u> </u>	0.0020	-18.5 +- 0.9		0.0	•	10.2
and the state of t		•				
					•	
-						
		•				

1

(

	X-RAY DIF						
	1752-26887	5-15-51-M	ΙN	LONG.,	2.0 MILS	GRN DIR	
/ T A) \	-60.0		-20	• C			
	I I	-+I	+	I+-	I	, I	+1
6.0000	<u> </u>						
0.0001	<u>[</u>						
0.0002	I <u></u>						
0.0004 : : 0.0005		*0					
0.0006	,	•					
0.0000 0.0007	<u>.</u> 	*					
ย่อบกร	· · · · · · · · · · · · · · · · · · ·	*	year 1 miles may				
	<u></u>	•					
0.6611	l	*					
0.0012				*0			
0.0014	I			*			
J.00151					•		
1.0016					*		
0.0017				-	*		
.0019					*		
U.0U21					7		
	i T						
.0022		* *					
.0026	I						
0027							
0029	Į						
•0030 <u> </u>	. =						
.0031							
.0032	<u>-</u>						
0.0034							
0.0036		=					
0.0037	T						
0.0039	, ,						
0.0046	•	•					
0.0041	<u>. </u>						
0.0042	I						
.0044		•					
0.0045	[, . <u>.</u>						
0.0046							
0.0047							
U.0049 1	<u> </u>						
0.0050	l 					· 7	
•	FITTED POINTS			D DATA =			7 1
	TILLE BOTHIS	·	TEN SUKE	U UNIA =	- (,		

METCUT RESEARCH ASSOCIATES THE. CINCINNATI, JUHIO

17	752-26887 5-1	15-51-MIN	LONG, SUF	REACE GRN [OIR.
_ PSI	2 THETA	TIME	COR. TIME	O (A)	VERTEX +- ST.DE
0.000	154.200	33.830	324.907		
	154.700		279.958 268.853		
	155.300				
	155.800		282.096		
	136.200	33.570	317.326	1.17274	
					155.2340 +-0.00
45.000	155.000	23.370	381.148		
	155.500	22.790	3 29.362		
	156.000		2 91.29 9		
		. 1.22.500			
	157.000	22.980	458.229	1.17127	
					155.8986 +-0. 00
_ E / (1,+,V,) _=	2450	441. (k	(SI)	STRESS =	-61.5 +- 1.8 (KS
DELTA D_ =	-U.00147 (, , , , , , , , , , , , , , , , , , ,	•	STRAIN =	-0.001255 (IN./I
F	IVE POINT PA	ARABOLIC D		PEAK STRESS	S ANALYSIS
	IVE POINT PA				
17	'52-26887 5 - 1	15-51-MIN	LONG.,a	0.4 MILS.,	
17 PSI	752-26887 5-1 2 THETA	15-51-MIN TIME	LONG.,a	0.4 MILS.,	FRM DIR.
17	752-26887 5-7 2 THETA 154.000	15-51-MIN TIME 41.320	LONG.,a	0.4 MILS.,	FRM DIR.
17 PSI	752-26887 5-1 2 THETA	15-51-MIN TIME 41.320 40.760	LONG.,a COF. TIME 779.048	0.4 MILS.,	FRM DIR.
17 PSI	752-26887 5-7 2 THETA 154.000 154.500 155.000 155.500	TIME 41.320 40.760 40.230 40.300	LONG., a COF. TIME 779.048 689.449 620.412 632.392	0.4 MILS., D (A)	FRM DIR.
17 PSI	752-26887 5-7 2 THETA 154.000 154.500 155.000	TIME 41.320 40.760 40.230	LONG., a COF. TIME 779.048 689.449 620.412	0.4 MILS.,	FRM DIR. VEPTEX +- ST. E
17 PSI	752-26887 5-7 2 THETA 154.000 154.500 155.000 155.500	TIME 41.320 40.760 40.230 40.300	LONG., a COF. TIME 779.048 689.449 620.412 632.392	0.4 MILS., D (A)	FRM DIR.
17 PSI 6.000	2 THETA 154.000 154.500 155.000 155.500 156.000	TIME 41.320 40.760 40.230 40.300 40.540	LONG., a COF. TIME 779.048 689.449 620.412 632.392 668.089	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST. E
17 PSI	2 THETA 154.000 154.500 155.000 155.500 156.000	TIME 41.320 40.760 40.230 40.300 40.540	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 668.089	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST. E
17 PSI 6.000	2 THETA 154.000 154.500 155.000 155.500 155.600 155.600	TIME 41.320 40.760 40.230 40.300 40.540 27.780 27.420	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 638.089	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST. E
17 PSI 6.000	2 THETA 154.000 154.500 155.000 155.500 156.000 155.500 156.000	75-51-MIN TIME 41.320 40.760 40.230 40.300 40.540 27.780 27.420 27.110	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 668.089 1009.900 882.245 809.418	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST. E
17 FSI 6.066	2 THETA 154.000 154.500 155.000 155.500 155.600 155.600	75-51-MIN TIME 41.320 40.760 40.230 40.300 40.540 27.780 27.420 27.110	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 638.089	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST. E
17 PSI 6.000	2 THETA 154.000 154.500 155.000 155.500 156.000 155.500 156.000 156.000	75-51-MIN TIME 41.320 40.760 40.230 40.300 40.540 27.780 27.420 27.110 27.160	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 668.089 1009.900 882.245 809.418 985.448	().4 MILS., B (A)	FRM DIR. VEPTEX +- ST. 5
17 PSI 6.000	2 THETA 154.000 154.500 155.000 155.500 156.000 155.500 156.000	75-51-MIN TIME 41.320 40.760 40.230 40.300 40.540 27.780 27.420 27.110	LONG.,a COF. TIME 779.048 689.449 620.412 632.392 668.089 1009.900 882.245 809.418	0.4 MILS., D (A)	FRM DIR. VEPTEX +- ST.

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

FIVE	POINT	PARABOLIC	DIFFRACTION	PEAK	STRESS	AMALYSIS

	17	752-26887 5-15	-51-HIN	LONG.,	. 1.0 MILS.	GRN DIR.
	PSI	2 THETA	TIME	COR. TIME	Ŀ (A)	VERTEX +- ST.DEV.
- · · - · · · · ·	u.000	154.500	35.470 33.870 33.210	415.147 322.941 294.8 0 6		
			32.780 33.190	278.828 296.059	1.17231	155.4277 +-0.0046
	45.000	155.000 155.5 00	23.640 23.060	32 9. 376 28 3. 626		
		156.000 156.500 157.000	22.940 23.020 23.290	289.796 32 0. 005 38 8. 944	1.17152	456 7042
	E/(1+V) =	2450ÿ. +-	441. (KSI)	STRESS =	155.7852 +-0.0041 -33.0 +- 1.4 (KSI)
	DELTA D =	-0.00079 (A)			STHAIN =	-0.000674 (IN./IN.)

FIVE POINT PARABULIC DIFFRACTION PEAK STRESS ANALYSIS

	17	52-268×7 5 -1 5•	-51-MIN	LONG.,a	1.3 MILS.,	GRN DIR.
	PS1	2 THETA	TIME	COR. TIME	Ü (A)	VERTEX +- ST. PEV.
(0.000		42.010 41.550 41.080 41.280	791.733 717.504 6 53.533 6 84.453		
- -		156.50 p	41.450	713.348	1.17166	155.7206 +-0.0060
4	000	155.000 155.50 0	28.450 25.210	724. 354 2 36.221		
		156.000 156.50 0 157.000	27 .8 70 27 .9 60 28.050	648.483 768.304 940.744	1 17177	
		177.000	28.030	74().744	1.17177	155.6717 +-0.0036
E/((1+V) =	24500. +-	441. (K	(\$1)	STRESS =	4.5 +- 1.() (rs1)
DEL	_TA D =	0.00011 (A)			STHAIN =	0.000092 (IN./IN.)

METCUT RESEARCH ASSOCIATES INC. CINCINCATI, .CHIC

F1		ABOLIC DI	FFRACTION	PEAK STRESS	S ANALYSIS
		-			
175	52-26887 5-15	-51-MIN	LONG., a	2.0 MILS.,	GEN DIP.
P\$1	2 THETA	TIME	COR. TIME	(A) <u>d</u>	VERTEX +- ST.DEV.
0.000	155.000 155.500 156.000	44.120 43.840 43.520 43.750 43.910	885.667 826.386 87 6. 914	1.17199	
// 550	455 400	26 040	-2452 740		155.5765 +-0.0071
45.600	155.950 156.500	29.320 · 29.520	-5240.021 -1 9 29.1 52		
	157.00 0	79.660	-1280.0 87 	1.17155	155.7716 +0005
E/(1+V)=	24500. +-	441. (K	51)	STRESS =	-18.5 +- 0.9 (kSI)
DELTA_D =	-Q.00044 (A)			STRAIN =	-0.000378 (IN./IN.)
		• -			
			. 		
	•				
					
<u> </u>					
the second secon					
				•	
-					

	METCUT RESEARCH / CINCINNAT	ASSOCIATES INC.	
RES	LDUAL STRESS DEPTH	CORRECTION ANALYS	SIS
1752-268	87 4-15-51-MAX	LONG., 2 2.0 MILS.	GRN DIK.
E/(1+V)=	24560. +- 441.	(KSI) MU= 2196	5. (1/IN)
DATA POINT DEPTH	MEASURED_	RESIDUAL STRESS (GRAD. CORRECTED	KSI ************************************
1	127.8 +- 3.0	119.4	119.4
20.0005	138.0 +- 3.1	136.8	136.5
30.0009	136.4_+- 3.0	143.5	143.1
40.0012	114.5 +- 2.7	122.0	121.3
0.0020	133.0 +- 2.7	120.6	119.6
The second secon			
		•	
And the companion of the second contract of t			
	· · · · · · · · · · · · · · · · · · ·		

AT COMMENTER OF THE STATE OF	de despire de	V=0.4V D.T.		MAT1 OHIO	05.55 44.44.40		
		X-RAY DI					
		1752=26887	. 4.=15 <i>=</i> 51+M/	AX . LONG	., a 2.0 MIL	S.,GRN DIR	•
DEPTI			125.0	STRESS (KS	135.0	•	145.0
6.0000)	I 0	+I	+I	-+ <u>l</u>	+I	+I
0.000		I	*				
	2	Ī		*			
0.000		Ī		*	· · ·		
0.000		Ī			* O		
0.000		I	- · · · <u>-</u>			*	
U.000		Ī				*	
0.000		1	• • •	-		* (9
0.0010		I			*		
0.001		I		*			
0,001	2	I 6					
0.G014		I					
0.001	5	I *		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
0.061		j *					
5.001	7	1					
0.0019		I *					
		I 📍		***			
0.0021		I					
0.0027		1					
0.0024		I					
0.002		I		* •			
0.002/		I					
0.0027		1					
0.002		I					
0.0030		I					
0.003		Ī					
0.003		I •					
0.0034		Ī					
0.0039		ļ					
0.0036		I					
0.003		1 T					
0.0059 0.0040		1	•				
0.004		7					
0.004		1					
0.0044		1	•				
0.004		Ī					
0.0046		Ī					
0.0047		ī					
0.0049		<u>.</u>					
0.0050		Ī					
		I+I	+1	+I	-+	+	1
- maga- , maga-		FITTED POINTS				-	•

· - -

- . . .

.

METCUT FESFARCH ASSOCIATES INC. CINCINNATI, OHIO

			IFFRACTION A	PHAK SIRESS	, rinclisis
17	752-2 68 87 4 -1 5	-51-MAX.	LONG, SUF	RFACE, BURNE	D ARFA,GRN DIK.
PS1	2 THETA	TIME	COR. TIME	D (A)	VERTEX +- ST.PEV.
0.000	156.300	32.420	291.593		
	156.000	31.340	251.874		
	157.300	31.140_	246.075		
	157.700	31.620	263.112		
	158.000	32.050	279.848	1.16852	
	•				1:7.1951 +-0.0048
45.000	155.000	21.750	229.704		
45.000	155.500 155.500	21.130	466 ""7		
	156.000	20.900			
	156.500 157.000	21.100		4 47467	
			£70.633	1.17157	155.7619 +-0.0031
	2450). +-	441. ((SI)	SIRESS =	127.8 +- 3.0 (KSI)
DELTA D =	= 0.00305 (A)			STRAIN =	0.0026 07 (IN./IN.)
	FIVE POINT PAR				
	FIVE POINT PAR				
			LONG., a	0.5 MILS, G	
17	752-26887 4-15 2 THETA	-51-MAX	LONG., &	0.5 MILS, G	SKA DIR.
 17	752-26887 4-15 2 THETA 15 6. 500	-51-MAX TIME 29.790	LONG., & COR. TIME 207.165	0.5 MILS, G	SKA DIR.
17	752-26887 4-15 2 THETA 15 6. 500 156 . 900	-51-MAX TIME 29.790 28.890	COR. TIME 207.165 186.590	0.5 MILS, G	SKA DIR.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300	-51-MAX TIME 29.790 28.890 28.540	LONG., 6 COR. TIME 207.165 186.590 179.607	0.5 MILS, G	SKA DIR.
17 PSI	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700	-51-MAX TIME 29.790 28.890 28.540 28.660	LONG., a COR. TIME 207.165 186.590 179.607 182.503	0.5 MILS, 0	SKA DIR.
17 PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100	-51-MAX TIME 29.790 28.890 28.540	LONG., a COR. TIME 207.165 186.590 179.607 182.503	0.5 MILS, G	SKA DIR.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600	COR. TIME 207.165 186.590 179.607 182.503 204.358	0.5 MILS, 0	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600	LONG., 6 COR. TIME 207.165 186.590 179.607 182.503 204.358	0.5 MILS, 0	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358	0.5 MILS, 0	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100 155.500 156.000	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270 20.270 20.030	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358 184.444 150.180 147.322	0.5 MILS, 0	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100 155.500 156.000 156.500	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270 20.030 20.500	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358 184.444 150.180 147.322 173.290	O.5 MILS, G D (A) 1.16825	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100 155.500 156.000	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270 20.270 20.030	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358 184.444 150.180 147.322	0.5 MILS, 0	VERTEX +- ST.BEV. 157.3287 +-(0050
PSI 0.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100 155.500 156.000 156.500	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270 20.030 20.500	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358 184.444 150.180 147.322 173.290	O.5 MILS, G D (A) 1.16825	SKN DIR. VERTEX +- ST.PEV.
PSI 0.000 45.000	752-26887 4-15 2 THETA 156.500 156.900 157.300 157.700 158.100 155.500 156.000 156.500	-51-MAX TIME 29.790 28.890 28.540 28.660 29.600 21.230 20.270 20.030 20.500 21.620	LONG., a COR. TIME 207.165 186.590 179.607 182.503 204.358 184.444 150.180 147.322 173.290 258.872	O.5 MILS, G D (A) 1.16825	VERTEX +- ST.BEV. 157.3287 +-(0050

METCUT RESEIRCH ASSOCIATES INC. CINCINNATI, .OHIO

	1752-26887 4-1	5-51-MAX	لقر. LONG	n.9 MILS.	GRN DIP.
PS1	2 THETA	TIME	COR. TIME	î (A)	VERTEX +- ST. DEV.
0.000	156.000	32.540	271.962		
	156.500	30.770	218.096		
	157.000	29.570	190.220		
	157.500	29.650	192.488		
	158.000	30.600	215.597	1.16838	
					157.2630 +-0.0036
45.000	155.000	22.720	189.044		
	155.000 155.500	22.020	166.584		
	756.909	21.870	167.154		
	156.500	22.110_	184.209		
			267.895	1.17164	
			•		155.7318 +-0. 0 02 <i>9</i>
E/(1+V)	=24500 +	- 441. (KS1)	STRESS =	136.4 +- 3.0 (YSI)
DELTA L					0.002784 (IN./IN.)
	- 9.10323 (A			31681W =	W.UUZ/64 (IM./IM.)
	FIVE POINT PA	RABOLIC D	IFFRACTION F	PEAK STRES!	S ANALYSIS
	FIVE POINT PA				
	1752-26887 4-1	5-51-MAX	LONG., a	1.2 MILS.	
PSI	1752-26887 4-1 2 THETA	5-51-MAX	LONG., a	1.2 MILS.	,CKN DIK.
	1752-26887 4-1 2 THETA 156.300	5-51-MAX TIME 31.350	LONG., a COR. TIME 227.624	1.2 MILS.	,CKN DIK.
PSI	1752-26887 4-1 2 THETA 156.300 156.700	5-51-MAX TIME 31.350 30.370	LONG., a COR. TIME 227.624 203.328	1.2 MILS.	,CKN DIK.
PSI	1752-26887 4-1 2 THETA 156.300 156.700 157.300	5-51-MAX TIME 31.350 30.370 29.850	LONG., a COR. TIME 227.624 203.328 192.335	1.2 MILS.	,CKN DIK.
PSI	1752-26887 4-1 2 THETA 156.300 156.700 157.301 157.600	5-51-MAX TIME 31.350 30.370 29.850 30.320	LONG., a COR. TIME 227.624 203.328 192.335 203.200	1.2 MILS.,	,CKN DIK.
PSI	1752-26887 4-1 2 THETA 156.300 156.700 157.300 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850	1.2 MILS.	,CRN DIR. VERTEX +- ST.DEV.
PSI	1752-26887 4-1 2 THETA 156.300 156.700 157.301 157.600	5-51-MAX TIME 31.350 30.370 29.850 30.320	LONG., a COR. TIME 227.624 203.328 192.335 203.200	1.2 MILS.,	,CKN DIK.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.301 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850	1.2 MILS.,	,CRN DIR. VERTEX +- ST.DEV.
PSI	1752-26887 4-1 2 THETA 156.300 156.700 157.301 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850	1.2 MILS.,	,CRN DIR. VERTEX +- ST.DEV.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.301 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850	1.2 MILS.,	,CRN DIR. VERTEX +- ST.DEV.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.300 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320 20.000	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850 186.349 290.463 126.003	1.2 MILS.,	,CRN DIR. VERTEX +- ST.DEV.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.600 157.900 155.000 156.000 156.000	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320 20.000 21.300	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850 186.349 290.463 126.003 176.223	1.2 MILS., D (A) 1.16541	,CRN DIR. VERTEX +- ST.DEV.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.300 157.600 157.900	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320 20.000	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850 186.349 290.463 126.003	1.2 MILS.,	,CRN DIR. VERTEX +- ST.DEV.
PSI 0.000	1752-26887 4-1 2 THETA 156.300 156.700 157.600 157.900 155.000 156.000 156.000 157.000	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320 20.000 21.300 22.380	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850 186.349 290.463 126.003 176.223 252.775	1.2 MILS., D (A) 1.16541	VERTEX +- ST.DEV. 157.2511 +-0.0055
PSI 0.000 45.000	1752-26887 4-1 2 THETA 156.300 156.700 157.600 157.900 155.000 156.000 156.000	5-51-MAX TIME 31.350 30.370 29.850 30.320 30.460 22.020 23.320 20.000 21.300 22.380	LONG., a COR. TIME 227.624 203.328 192.335 203.200 206.850 186.349 290.463 126.003 176.223 252.775	1.2 MILS., D (A) 1.16541	VERTEX +- ST.DEV. 157.2511 +-0.0055

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, JOHIO

FIVE POINT	PARABOLIC	DIFFRACTION	PEAK	STRESS	ALALYSIS
------------	-----------	-------------	------	--------	----------

		-			
1	752-26887 4-15	-51-MAX	LUNG., â	2.0 MILS.,	GEN DIP.
PSI	2 THETA	TIME	COR. TIME	D (A)	VIPTEX +- ST.DEV.
0.000	156.500 _157.300	43.910 43.030 42.220 42.530 43.390	1004.309 611.831 688.466 736.001 899.518	1.16%7	
		121310			157.1221 +-0.0029
45.000	155.000 155.500 156.000 _156.500		1543.133 1205.224 1318.065 2675.323		
		29.250	9213.071	1.1716!	155.63 6 2 +-0.0010
				STRESS =	133.0 +- 2.7 (KSI)
DELTA D	= 0.00317 (A)			STRAIN =	0.002715 (IN./IN.)
-		-	÷		

..

APPENDIX E

HP 18-12, Hughes Helicopters specification for low stress grinding of high strength steel. This specification was released during the course of this program. It is included here as it was originally written. Based on the efforts of this program, some changes are recommended as discussed in the content of the report.

REVISIONS				
LTR	DESCRIPTION	DATE	APPROVED	
New	Released on EO 132596	08/25/79		

SCOPE:

This process specification establishes the requirements and procedures for grinding hardened steel and chrome-plated steel parts by surface, cylindrical, and centerless grinding methods using bonded abrasive wheels. This process is specifically intended for grinding of ESR 4340, 300M, and VAR 4340 steels at strength levels of 260 to 300 ksi.

APPD CAMPAGE WELL		ind Teale Streets California 90230
8/22/79 Sky, O'Sil, 8/24/74 P. J. Land 8-22-79 Skyllon	TITLE LOW STRESS GRINDING OF H STRENGTH STEEL (ESR 4340, 300N 4340) AT STRENGTH LEVELS OF 2 KSI	AND VAR
8/22/79 / Janley	SIZE CODE IDENT NO. NO.	REV -12 Nev
S/22/78 There's	SHEET	l of 10

1. SCOPE

- 1.1 This process specification establishes the requirements and procedures for grinding hardened steel and chrome-plated steel parts by surface, cylindrical, and centerless grinding methods using bonded abrasive wheels. This process is specifically intended for grinding of ESR 4340, 300M, and VAR 4340 steels at strength levels of 260 to 300 ksi.
- 1.2 <u>Classification</u>. The steels covered by the requirements of this specification are listed by AISI and HH designations and by heat-treat ranges.

AISI Designation	HH Designation	Heat Treat Range
4340		260 to 280 ksi
		(1793 to 1931 MPa)
300M		280 to 300 ksi
		(1931 to 2069 MPa)
	4340 ESR	R _c 54 (280 ksi, min) (1931 MPa)

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents, of the issue in effect on date of the invitation for bids or request for proposal, form a part of this specification to the extent specified herein. In case of conflict between these documents and this specification, the requirements of this specification shall prevail.

SPECIFICATIONS

MIL-H-6875 Heat Treatment of Steels (Aerospace Practice, Process for MIL-S-8844 Steel Bars, Reforging Stock and Mechanical Tubing, Low Alloy, Premium Quality

CODE IDENT NO.	STEEL (ESR 4340, 300M, VAR 4340) AT	HP 18-12	REV. New
02731	STRENGTH LEVELS OF 260 TO 300 KSI	SHEET 3 of 10	

FORM 1642B

- 2.1.1 Copies of specifications, standards, drawings, and publications required by suppliers in connection with specified procurement functions should be obtained from the procuring activity or as directed by the contracting officer.
- 2.2 Non-Government documents. The following documents form a part of this specification to the extent specified herein. Unless otherwise indicated, the issue in effect on date of invitation for bids or request for proposal shall apply. In case of conflict between these documents and this specification, the requirements of this specification shall prevail.

SPECIFICATIONS

Industry

Hughes Helicopters

HP 1-1	Heat Treatment of Steels Nickel Base and Cobalt-Base Alloys	
HP 1-9	Hydrogen Embrittlement Relief	
HP 4-1	Corrosion and Handling Protection	
HP 6-5	Magnetic Particle Inspection	
HP 6-19	Hardness Testing of Metals	
HP 9-25	Vapor Degreasing	
HP 30-4	Etching for Detection of Grinding Burns	
HMS 6-1121	4340 ESR Steel	

OTHER PUBLICATIONS

American Society for Metals

Metals Handbook (8th Edition - Volume 3)

Machining

HP	18-12	REV. New	LOW STRESS GRINDING OF HIGH STRENGT STEEL (ESR 4340, 300M, VAR 4340) AT	H CODE IDENT NO.
SHEE	T 4 of	10	STRENGTH LEVELS OF 260 TO 300 KSI	02731

Machining Data Center

MDC 78-103

Low Stress Grinding for Quality Production

3. REQUIREMENTS

3.1 Equipment

- 3.1.1 Machines. Grinding machines used shall be equipped with:
- a. Positive controls to maintain feed and speed limitations during processing.
- b. A system providing continuous filtered coolant flow at the part/grinding wheel interface.
- c. Tooling capable of holding parts in a completely rigid position during processing.
- 3. 1. 2 Grinding wheels. Wheels used shall be vitrified-bonded, aluminum oxide, or equivalent, as described in the ASM Handbook on machining and in MDC 78-103, and shall have an appropriate grit size to produce the desired finish.

3.2 Procedures

- 3. 2. 1 Cleaning. Parts shall be cleaned in accordance with the requirements of HP 9-25 (do not anodic clean) prior to grinding.
- 3.2.2 <u>Dressing</u>. Grinding wheels shall be dressed, as necessary, but always prior to rough and finish grinding.
- 3.2.3 Grinding. All grinding shall be performed on the periphery surface of the grinding wheel only. Grinding on the flat side of the wheel shall be forbidden.
- 3.2.4 Coolant. Coolant shall be supplied continuously across the width of the grinding wheel and directly into the part/wheel interface. The direction of coolant flow shall coincide with wheel rotation.

CODE IDENT NO.	LOW STRESS GRINDING OF HIGH STRENC STEEL (ESR 4340, 300M, VAR 4340) AT			REV.
00704	STEEL (ESR 4340, 300M, VAR 4340) AT STRENGTH LEVELS OF 260 TO 300 KSI	nr	18-12	New
02731	STRENGTH DEVELS OF 200 TO 300 KSI	SHEE	т 5 о	f 10

FORM 1642B

- 3. 2. 5 High spots. Prior to starting the grinding operation, high spots on the part shall be located to avoid accidental excessive infeed during grinding.
 - 3.3 Grinding requirements
- 3.3.1 Surface and cylindrical grinding. All surface and cylindrical grinding shall be accomplished in accordance with 3.3.1.1 and 3.3.1.2 herein.
- 3.3.1.1 <u>Limitations.</u> Surface and cylindrical grinding limitations shall be as specified in Table I.
- 3. 3. 1. 2 Technique data cards. Surface and cylindrical grinding shall meet the requirements of a technique data card established for each part and shall be maintained at the vendor facility for HH review.
- 3. 3. 1. 2. 1 The technique specified on the data card shall have been demonstrated to produce ground surfaces in conformance to the requirements of the engineering drawing.
- 3. 3. 1. 2. 2 A record of all changes in technique data cards showing effectivity (date or serial number) shall be maintained. The technique data card shall include the following information and other pertinent data as required:
 - a. Part number.
 - b. Outline of surfaces to be ground.
 - c. Grinding machines authorized for use.
 - d. Required tooling.
 - e. Wheel speed.
 - f. Workpiece (part) speed.
 - g. Infeed rates.
 - h. Cross feed.
- i. Wheel dressing practice, including number of passes between redressing for both rough and finish grinding.
 - j. Coolant-type, supply rate, and nozzle location.

HP 18-12	LOW STRESS GRINDING OF HIGH STRENGT STEEL (ESR 4340, 300M, VAR 4340) AT	CODE IDENT NO.
SHEET 6 of	 STRENGTH LEVELS OF 260 TO 300 KSI	02731

NOTE

Tolerances shall be noted for feeds and speeds.

TABLE L SURFACE AND CYLINDRICAL GRINDING LIMITATIONS FOR HARDENED STEEL AND CHROME PLATE ON HARDENED STEEL

Parameter	Chrome Plate	ESR 4340 and 300M		4340 at 260-280	ksı	
Wheel Grade	I or softer	l or softer		J or softer		
Wheel Speed SFPM, Max	Internal cylindrical - 6000 Other - 4000	Low-under 3500		Low-under 3500		
Work Speed SFPM, Max	150	80		80		
Cross Feed - Surface, Inch per Pass, Max	0. 100	0.100		0.100		
Cylindrical, Exter- nal and Internal	1/4 wheel width per part revolution, max.	1/4 wheel width per part revolution, max.		1/4 wheel width per part revolution, max.		
Infeed (Downfeed) Inch per Pass, Max.		Surface and External Cylindrical	Internal	Surface and External Cylindrical	Internal	
Rough	0.0002	0.0007 to within 0.005 inch of finish	0.0005 to 0.005 inch of finish	0, 0008	0. 0004	
Finish	0. 0002	0. 0003	0. 0002	0, 0008	0,0004	
Grinding Fluid	Oil base types shall be us	ed.				

CAUTION

Centerless grinding will produce multi-lobe conditions on parts. Caution must be exercised to determine actual lobing condition as this will effect actual diameter of the part.

- 3.3.2 Centerless grinding. All centerless grinding shall be accomplished in accordance with 3.3.2.1 and 3.3.2.2 herein.
- 3.3.2.1 <u>Limitations</u>. Centerless grinding limitations shall be as specified in Table II.

CODE IDENT NO.	LOW STRESS GRINDING OF HIGH STRENGTH STEEL (ESR 4340, 300M, VAR 4340) AT STRENGTH LEVELS OF 260 TO 300 KSI	HP 18-12	REV. New
02/31 FORM 1642R		SHEET 7 of	10

FORM 1642B

TABLE II. CENTERLESS GRINDING LIMITATIONS FOR HARDENED STEEL AND CHROME PLATE ON HARDENED STEEL

Parameter	Chrome Plate	Hardened Steel
Wheel Grade	I or softer	I or softer
Wheel Speed SFPM, Max.	4000	Low-under 3500
Diametric metal removal rate per pass, inch per inch of wheel width, max.	·	
Rough (to within 0.002 inch of finish)	0.0003	0.0005
Finish	0.0008	0.0008
Grinding Fluid	Oil base types shall be	e used.

- 3. 3. 2. 2 Technique data cards. Centerless grinding shall meet the requirements of a technique data card established for each part.
- 3.3.2.2.1 The technique specified on the data card shall have been demonstrated to produce ground surfaces in conformance to the requirements of the engineering drawing.
- 3.3.2.2.2 A record of all changes in technique data cards showing effectivity (date or serial number) shall be maintained. The technique data card shall include the following information and other pertinent data as required:
 - a. Part number.
 - b. Outline of surfaces to be ground.
 - c. Grinding machines authorized for use.
 - d. Required tooling.

HP 18-12	REV. New	LOW STRESS GRINDING OF HIGH STRENGT STEEL (ESR 4340, 300M, VAR 4340) AT	HCODE IDENT NO.
SHEET 8 of	10	STRENGTH LEVELS OF 260 TO 300 KSI	02731

PROCESS SPECIFICATION

- e. Wheel speed.
- f. Part through feed speed.
- g. Regulating wheel angle.
- h. Vertical position and rake angle of work-rest blade.
- i. Metal removal rate per pass.
- j. Wheel dressing practice, including number of passes between redressing for both rough and finish grinding.
 - k. Coolant type, supply rate, and nozzle location.

NOTE

Tolerances for operating variables shall be noted.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 Responsibility for inspection. Unless otherwise specified in the contract or order, the supplier is responsible for the performance of all inspection requirements as specified herein. Except as otherwise specified, the supplier may utilize his own facilities or any commercial laboratory acceptable to Hughes Helicopters. Hughes Helicopters reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure that suppliers and services conform to prescribed requirements.
- 4.2 <u>Test methods</u>. Tests and inspections shall be performed to assure conformance to the requirements of Section 3.

4.3 Acceptance inspection.

- 4.3.1 Etching of hardened steel. The following inspections shall be performed after grinding of unplated steel.
- a. Surfaces of parts ground after hardening shall be etched in accordance with HP 30-4 and inspected for surface effects. Etching shall be performed prior to any operation altering the ground surface, including but not limited to polishing, honing, lapping, shot peening and heating.

	LOW STRESS GRINDING OF HIGH STRENGTH STEEL (ESR 4340, 300M, VAR 4340) AT STRENGTH LEVELS OF 260 TO 300 KSI	HP	18-12	REV. New
02731	I	SHEE	т 9	of 10

FORM 1642B

- b. Parts shall be embrittlement relieved in accordance with HP 1-9 prior to honing, lapping, shot peening, and plating when etching is performed in accordance with HP 30-4.
- c. Parts and stock etched in accordance with HP 30-4 shall be examined visually in good light by qualified personnel. Surfaces of parts and stock shall be uniform in color and free of the following indications:
 - (1) Dark areas Indicative of overtempering.
 - (2) Light area within dark area Indicative of the presence of a rehardened zone from heat generated during grinding surrounded by a transition zone of annealed and overtempered metal.
 - (3) Cracks Indicative of presence of high stresses induced during grinding.

Parts and stock showing any of the above indications shall be rejected.

- 4.3.2 Magnetic particle inspection. Parts shall be magnetic particle inspected in accordance with HP 6-5 after grinding.
- 4.4 Records. Records shall be retained for 3 years after completion of the contract.
- 4.5 Reports. Unless otherwise specified, the vendor of the product shall furnish with each shipment three copies of a report of the results of all tests performed for determining conformance to the technical requirements of this specification. This report shall include the purchase order number material specification number with revision date, and size and quantity from each heat. When forgings are supplied, the lot number and part number, shall be included in the report.
 - 5. PREPARATION FOR DELIVERY
- 5.1 All parts shall be processed in accordance with HP 4-1 prior to delivery or storage.
 - 6. NOTES
 - 7. APPROVED VENDORS
- 7.1 Only vendors listed on Hughes Helicopters Approved Vendors List (AVL) 18-12 shall perform this process.

HP	18-12	- 1	LOW STRESS GRINDING OF HIGH STRENGT STEEL (ESR 4340, 300M, VAR 4340) AT	HCODE IDENT NO.
SHEE	T 10 of	10	STRENGTH LEVELS OF 260 TO 300 KSI	02731

FORM 1642A

irmy Materials and Mechanics Research Center, Matertown, Massachusetts 02172	AD
CONVENTIONAL MACHINING OF ESR 4340 STEEL K.K. Niji	UNLIM
<pre>iechnical Report AWMRC TR 80-F-14, July 1980, illus-table, D/A Project 1787240, 104 pp - AMCMS Code 1497017240XT8</pre>	Mach 5 - Elec 4340

UNCLASSIFIED
(ITED DISTRIBUTION ctroslag remelting 4340 Steel Tool life Cutting rates Cutting fluids Turning Key Words hining

This program involved the study of conventional machining of heat treated ESR 4340 steel (Rc 54-57). Initial effort involved a survey of available data regarding the machining of high strength steels with hardnesses of Rc 50 and above. A machining program was conducted, determining optimum tools and conditions for turning, drilling, face milling, end milling, and grinding operations. Effects of various parameters including cutting speeds, feeds, depths of cut, and cutting fluids on tool life was determined. All the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques were found to be applicable to this material when proper dressing procedures and reduced rates were used.

AD INCLASSIFIED	UNLIMITED DISTRIBUTION	Key Words
Army Materials and Mechanics Research Center, Matercown, Massachusetts 02172	CONVENTIONAL MACHINING OF ESR 4340 STEEL -	Total and American Deposit to the first and

fechnical Report AWMRC TR 80-F-14, July 1980, illus-table, D/A Project 1787240, 104 pp AMCMS Code 1497017240XT8

Electrosida remelting 4340 Steel Tool life Cutting rates Cutting fluids

Machining

This program involved the study of conventional machining of heat treated regarding steel (Rc 54.57). Initial effort involved a survey of available data regarding the machining of high strength steels with hardnesses of Rc 50 and above. A machining program was conducted, determining optimum tools and conditions for turning, drilling, face milling, end milling, and grinding operations. Effects of warlous parameters including cutting speeds, feeds, depths of cut, and cutting fluids on tool life was determined. All the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques were found to be applicable to this material when proper dressing procedures and reduced rates were used

AD UNCLASSIFIED	UNLIMITED DISTRIBUTION Key Words	Machining	Electrosiag remelting	4340 Stee!	Cutting rates	Cutting fluids	Turning
Army Materials and Mechanics Research Center, Waterfown, Massachusetts 02172	CONVENTIONAL MACHINING OF ESR 4340 STEEL - K.K. Niji	Technical Report AMMRC TR 80-F-14, July 1980,	illus-table, D/A Project 1787240, 104 pp -	AMCMS Code 1497017240XT8			

This program involved the study of conventional machining of heat treated ESR 4340 steel (Rc 54-57). Initial effort involved a survey of available data regarding the machining of high strength steels with hardnesses of Rc 50 and above. A machining program was conducted, determining optimum tools and conditions for turning, drilling, face milling, and grinding operations. Effects of various parameters including cutting speeds, feeds, depths of cut, and cutting fluids on tool life was determined. All the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques were found to be applicable to this material when proper dressing procedures and reduced rates were used.

AD UNCLASSIFIED UNLIMITED DISTRIBUTION Key Words	Machining Electroslag remelting 4340 Stee! Tool live Cutting rates Cutting fluids
Army Materials and Mechanics Research Center, Watertown, Massachusetts O2172 CONVERTIONAL MACHINING OF ESR 4340 STEEL - K.K. Niji	Technical Report AMMRC TR 80-F-14, July 1980, illus-table, D/A Project 1787240, 104 pp - AMCMS Code 1497017240XTB

This program involved the study of conventional machining of heat treated ESR 4340 steel {Rc 54-57}. Initial effort involved a survey of available data regarding the machining of high strength steels with hardnesses of Rc 50 and above. A machining program was conducted, determining optimum tools and conditions for turning, drilling, face milling, and grinding operations. Effects of various parameters including cutting speeds, feeds, depths of cut, and cutting fluids on tool life was determined. All the operations were found to be extremely difficult and application of conventional procedures is not feasible. Tool lives remained short despite reductions in speeds and feeds. Conventional grinding methods induced detrimental residual tensile stresses along the surface, resulting in cracking, lapping, and untempered martensitic structures. Low stress grinding techniques were found to be applicable to this material when proper dressing procedures and reduced rates were used.

DISTRIBUTION LIST

No. of Copies

To

Commander, U.S. Army Aviation Research and Development Command, P.O. Box 209, St. Louis, Missouri 63166

ATTN: DRDAV-EGX DRDAV-D 1 DRDAV-N 1

> Project Manager, Advanced Attack Helicopter, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-AAH-TM DRCPM-AAH-TP 1

Project Manager, Black Hawk, P.O. Box 209, St. Louis, Missouri 63166 2 ATTN: DRCPM-BH-T

Project Manager, CH-47 Modernization, P.O. Box 209, St. Louis, Missouri 63166 2 ATTN: DRCPM-CH-47-MT

Project Manager, Aircraft Survivability Equipment, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-ASE-TM

Project Manager, Cobra, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-CO-T

Project Manager, Advanced Scout Helicopter, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-ASH

Project Manager, Navigation/Control Systems, Fort Monmouth, New Jersey 07703 2 ATTN: DRCPM-NC-TM

Project Manager, Tactical Airborne Remotely Piloted Vehicle/Drone Systems, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-RPV

Commander, U.S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333

ATTN: DRCMT DRCPM

> Director, Applied Technology Laboratory, Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia 23604

2 ATTN: DAVDL-ATL-ATS

Director, Research and Technology Laboratories (AVRADCOM), Moffett Field, California 94035

2 ATTN: DAVDL-AL-D

Director, Langley Directorate, U.S. Army Air Mobility Research and Development Laboratories (AVRADCOM), Hampton, Virginia 23365

2 ATTN: DAVDL-LA, Mail Stop 266

Commander, U.S. Army Avionics Research and Development Activity, Fort Monmouth, New Jersey 07703

2 ATTN: DAVAA-O

Director, Lewis Directorate, U.S. Army Air Mobility Research and Development Laboratories, 21000 Brookpark Road, Cleveland, Ohio 44135

2 ATTN: DAVDL-LE

Director, U.S. Army Materials and Mechanics Research Center Watertown, Massachusetts 02172

2 ATTN: DRXMR-PL

2 DRXMR-PMT

1 DRXMR-PR

1 DRXMR-PD

1 DRXMR-AP

6 DRXMR-ER, Mr. A. M. Ayvazian, Jr.

Director, U.S. Army Industrial Base Engineering Activity, Rock Island Arsenal, Rock Island, Illinois 61299

4 ATTN: DRXIB-MT

Commander, U.S. Army Troop Support and Aviation Materiel Readiness Command, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120

ATTN: DRSTS-PLC

1 DRSTS-ME

2 DRSTS-DIL

Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, D.C. 20301

1 ATTN: Dr. L. L. Lehn, Room 3D 1079

12 Commander, Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314

Defense Industrial Resources Office, DIRSO, Dwyer Building, Cameron Station, Alexandria, Virginia 22314

1 ATTN: Mr. C. P. Downer

Headquarters, Department of the Army, Washington, D.C. 20310

2 ATTN: DAMA-CSS, Dr. J. Bryant

DAMA-PPP, Mr. R. Vawter

Director, Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209

1 ATTN: Dr. A. Bement

Tα Commander, U.S. Army Missile Command, Redstone Arsenal, Alabama 35809 DRSMI-ET 1 DRSMI-RBLD, Redstone Scientific Information Center 1 DRSMI-NSS Commander, U.S. Army Tank-Automotive Research and Development Command, Warren, Michigan 48090 ATTN: DRDTA-R 1 DRDTA-RCKM, Dr. J. Chevalier 1 1 Technical Library Commander, U.S. Army Tank-Automotive Materiel Readiness Command, Warren, Michigan 48090 1 ATTN: DRSTA-EB Commander, U.S. Army Armament Research and Development Command, Dover, New Jersey 07801 ATTN: DRDAR-PML Technical Library 1 1 Mr. Harry E. Pebly, Jr., PLASTEC, Director Commander, U.S. Army Armament Research and Development Command, Watervliet, New York 12189 ATTN: DRDAR-LCB-S SARWV-PPI Commander, U.S. Army Armament Materiel Readiness Command, Rock Island, Illinois 61299 ATTN: DRSAR-IRB 1 DRSAR-IMC 1 Technical Library Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, Virginia 22901 1 ATTN: DRXST-SD3 Commander, U.S. Army Electronics Research and Development Command, Fort Monmouth, New Jersey 07703 1 ATTN: DELET-DS

Commander, U.S. Army Electronics Research and Development Command, 2800 Powder Mill Road, Adelphi, Maryland 20783

1 ATTN: DRDEL-BC

Commander, U.S. Army Depot Systems Command, Chambersburg, Pennsylvania 17201

1 ATTN: DRSDS-PMI

Commander, U.S. Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland 21005

1 ATTN: DRSTE-ME

Commander, U.S. Army Communications and Electronics Materiel Readiness Command, Fort Monmouth, New Jersey 07703

1 ATTN: DRSEL-LE-R

Commander, U.S. Army Communications Research and Development Command, Fort Monmouth, New Jersey 07703

1 ATTN: DRDCO-PPA-TP

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005

1 ATTN: DRDAR-TSB-S (STINFO)

Chief of Naval Research, Arlington, Virginia 22217

1 ATTN: Code 472

Headquarters, Naval Material Command, Washington, D.C. 20360

1 ATTN: Code MAT-042M

Headquarters, Naval Air Systems Command, Washington, D.C. 20361

1 ATTN: Code 5203

Headquarters, Naval Sea Systems Command, 1941 Jefferson Davis Highway, Arlington, Virginia 22376

1 ATTN: Code 035

Headquarters, Naval Electronics Systems Command, Washington, D.C. 20360

1 ATTN: Code 504

Director, Naval Material Command, Industrial Resources Detachment, Building 75-2, Naval Base, Philadelphia, Pennsylvania 19112

1 ATTN: Technical Director

Commander, U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433

1 ATTN: AFWAL/MLTN

1

AFWAL/MLTM

1 AFWAL/MLTE

1 AFWAL/MLTC

National Aeronautics and Space Administration, Washington, D.C. 20546 1 ATTN: AFSS-AD, Office of Scientific and Technical Information

National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812

ATTN: R. J. Schwinghammer, EH01, Dir., M&P Lab

Mr. W. A. Wilson, EH41, Bldg. 4612

2 Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Hughes Helicopters-Summa, M/S T-419, Centinella Avenue and Teale Street, Culver City, California 90230

2 ATTN: Mr. R. E. Moore, Bldg. 314

Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut 06497

2 ATTN: Mr. Melvin M. Schwartz, Chief, Manufacturing Technology

Bell Helicopter Textron, Division of Textron, Inc., P.O. Box 482, Fort Worth, Texas 76101

2 ATTN: Mr. P. Baumgartner, Chief, Manufacturing Technology

Kaman Aerospace Corporation, Bloomfield, Connecticut 06002

2 ATTN: Mr. A. S. Falcone, Chief, Materials Engineering

Boeing Vertol Company, Box 16858, Philadelphia, Pennsylvania 19142

2 ATTN: R. Pinckney, Manufacturing Technology

2 R. Drago, Advanced Drive Systems Technology

Detroit Diesel Allison Division, General Motors Corporation, P.O. Box 894, Indianapolis, Indiana 46206

2 ATTN: James E. Knott, General Manager

General Electric Company, 10449 St. Charles Rock Road, St. Ann, Missouri 63074

2 ATTN: Mr. H. Franzen

AVCO-Lycoming Corporation, 550 South Main Street, Stratford, Connecticut 08497

2 ATTN: Mr. V. Strautman, Manager, Process Technology Laboratory

United Technologies Corporation, Pratt & Whitney Aircraft Division, Manufacturing Research and Development, East Hartford, Connecticut 06108

2 ATTN: Mr. Ray Traynor

Grumman Aerospace Corporation, Plant 2, Bethpage, New York 11714

2 ATTN: Richard Cyphers, Manager, Manufacturing Technology

2 Albert Grenci, Manufacturing Engineer, Department 231

Lockheed Missiles and Space Company, Inc., Manufacturing Research, 1111 Lockheed Way, Sunnyvale, California 94088

2 ATTN: H. Dorfman, Research Specialist

Lockheed Missiles and Space Company, Inc., P.O. Box 504, Sunnyvale, California 94086

2 ATTN: D. M. Schwartz, Dept. 55-10, Bldg. 572

